Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
An experimental and modeling study has been performed jointly by UTRC and DOE-FETC to determine the effect of humidity in the combustion air on emissions and stability limits of gas turbine premixed flames. This study focuses on developing gas turbine combustor design criteria for the Humid Air Turbine (HAT) cycle. The experiments were conducted at different moisture levels (0%, 5%, 10% and 15% by mass in the air), at a total pressure of 200 psi, pilot levels (0%, 1%, 3% and 5% total fuel), and equivalence ratio (0.4 to 0.8 depending on the moisture levels). The moisture levels were achieved by injecting steam into dry air well upstream of the fuel-air premixing nozzle. Computations were made for comparison to the experiments using GRI Mech 2.11 kinetics and thermodynamic database for modeling the flame chemistry. A Perfectly Stirred Reactor (PSR) network code was used to create a network of PSRs to simulate the flame. Excellent agreement between the measured and modeled NOx (5–10%) was obtained. Trends of added moisture reducing NOx and the effects of equivalence ratio and piloting level were well predicted. The CO predictions were higher by about 30–50%. The CO discrepancies are attributed to in-probe oxidation. The agreement between the data and model predictions over a wide range of conditions indicate the consistency and reliability of the measured data and usefulness of the modeling approach. An analysis of NOx formation revealed that at constant equilibrium temperature, Teq, the presence of steam leads to lower O-atom concentration which reduces “Zeldovich and N2O” NOx while higher OH-atom concentration reduces “Fenimore” NOx.
An experimental and modeling study has been performed jointly by UTRC and DOE-FETC to determine the effect of humidity in the combustion air on emissions and stability limits of gas turbine premixed flames. This study focuses on developing gas turbine combustor design criteria for the Humid Air Turbine (HAT) cycle. The experiments were conducted at different moisture levels (0 percent, 5 percent, 10 percent, and 15 percent by mass in the air), at a total pressure of 200 psi, pilot levels (0 percent, 1 percent, 3 percent, and 5 percent total fuel), and equivalence ratio (0.4 to 0.8 depending on the moisture levels). The moisture levels were achieved by injecting steam into dry air well upstream of the fuel-air premixing nozzle. Computations were made for comparison to the experiments using GRI Mech 2.11 kinetics and thermodynamic database for modeling the flame chemistry. A Perfectly Stirred Reactor (PSR) network code was used to create a network of PSRs to simulate the flame. Excellent agreement between the measured and modeled NOx (5–10 percent) was obtained. Trends of added moisture reducing NOx and the effects of equivalence ratio and piloting level were well predicted. The CO predictions were higher by about 30–50 percent. The CO discrepancies are attributed to in-probe oxidation. The agreement between the data and model predictions over a wide range of conditions indicate the consistency and reliability of the measured data and usefulness of the modeling approach. An analysis of NOx formation revealed that at constant equilibrium temperature, Teq, the presence of steam leads to lower O-atom concentration which reduces “Zeldovich and N2O” NOx while higher OH-atom concentration reduces “Fenimore” NOx.[S0742-4795(00)00703-1]
An aerodynamic quench is the most rapid method for quenching temperature and pressure-dependent chemical reactions. Attempts have been made to quench gas samples aerodynamically, but many of these attempts have been unsuccessful because of a lack of understanding of the internal aerodynamics of sampling probes. A one-dimensional model developed previously by the authors has been used for the design and analysis of aerodynamically quenching probes. This paper presents in detail the important aerodynamic and heat transfer equations used in the model, a description of the method of solution, and the results of a sensitivity study. These calculations demonstrate the limitations and important trade-offs in design and operating conditions of probes using an aerodynamic quench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.