We studied the optical properties of metalorganic chemical vapour deposited (MOCVD) InGaN/GaN multiple quantum wells (MQW) subjected to nitrogen (N) implantation and post-growth annealing treatments. The optical characterization was carried out by means of temperature and excitation density-dependent steady state photoluminescence (PL) spectroscopy, supplemented by room temperature PL excitation (PLE) and PL lifetime (PLL) measurements. The as-grown and as-implanted samples were found to exhibit a single green emission band attributed to localized excitons in the QW, although the N implantation leads to a strong reduction of the PL intensity. The green band was found to be surprisingly stable on annealing up to 1400°C. A broad blue band dominates the low temperature PL after thermal annealing in both samples. This band is more intense for the implanted sample, suggesting that defects generated by N implantation, likely related to the diffusion/segregation of indium (In), have been optically activated by the thermal treatment.
Compositional grading of InGaN/GaN multi quantum wells (QWs) was proposed to mitigate polarization effects and Auger losses in InGaN-based light emitting diodes [K. P. O'Donnell et al., Phys. Status Solidi RRL 6 (2012) 49]. In this paper we are reviewing our recent attempts on achieving such gradient via quantum well intermixing. Annealing up to 1250 ºC resulted in negligible interdiffusion of QWs and barriers revealing a surprising thermal stability well above the typical MOCVD growth temperatures. For annealing at 1400 ºC results suggest a decomposition of the QWs in regions with high and low InN content. The defect formation upon nitrogen implantation was studied in detail. Despite strong dynamic annealing effects, which keep structural damage low, the created defects strongly quench the QW luminescence even for low implantation fluences. This degradation could not be reversed during thermal annealing and is hampering the use of implantation induced quantum well intermixing in InGaN/GaN structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.