In this work, we studied the influence of the interpass time (20 and 5 s) on the interaction between recrystallization and strain-induced precipitation occurring during multiple passes' deformations under continuous cooling conditions in a high niobium-and nitrogen-bearing austenitic stainless steel (ISO 5832-9). The correlation between microstructure evolution and hot mechanical properties was performed by physical simulation using hot torsion tests. The microstructure evolution was analyzed by optical microscopy, transmission electron microscopy and electron back scattered diffraction (EBSD). This technique indicated that dynamic recrystallization occurred at the first passes promoting an excellent grain refinement. On the other hand, shorter interpass time (5 s) allowed higher volume fraction of smallest precipitates than larger interpass time (20 s). After soaking, only TiNbN precipitates were found, whereas, Z-phase (CrNbN) and NbN were formed during thermomechanical processing. Particles with sizes between 20 and 50 nm were effective to pin grain boundaries and dislocations.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.