Abstract. New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 µm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (d eff ) from 2.3 to 19.4 µm and coarse mode volume median diameter (d vc ) from 5.8 to 45.3 µm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with d eff > 12 µm, or d vc > 25 µm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to d eff . New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when d eff is greater than 2 µm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation, which should be taken into account by numerical weather prediction and climate models.
We describe observations from the Fennec supersite at Bordj Badji Mokhtar (BBM) made during the June 2011 Fennec Intensive Observation Period. These are the first detailed in situ observations of meteorology and dust from the central Sahara, close to the center of the Saharan heat low and the summertime dust maximum. Historically, a shortage of such Saharan observations has created problems for evaluating processes, models, and remote sensing. There was a monsoon influence at BBM before 8 June and after 12 June, with dry Harmattan winds in between. A split boundary layer, generated by ventilation from the Atlantic, persisted during the drier phase. Extensive cold pools (haboobs) and microburst‐type events were regularly observed. Moisture reached BBM at night from the monsoon and the embedded haboobs. As well as the regularly occurring nocturnal low‐level jet (LLJ), a Saharan upper boundary layer (650 hPa) jet was observed, where winds feel drag from dry convection in the afternoon. This jet is linked to the diurnal cycles of moisture and cloud. Most dust was observed in the cloudier monsoon‐affected periods, and covarying dust and cloud amounts explain most of the variations in shortwave radiation that control the surface sensible flux. Dustiness is related to a standard parameterization of uplift using 10 m winds (“uplift potential”), and this is used to estimate uplift. Around 50% of uplift is nocturnal. Around 30% is from the LLJ, and 50% is from haboobs, which are mainly nocturnal. This demonstrates, for the first time from observations, the key role of haboobs, which are problematic for models.
Abstract. The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALSREx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20 • S parallel between 70 • W and 85 • W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, sulphur dioxide and ozone were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients in aerosol and trace gas concentrations were observed to be associated with strong gradients in cloud droplet number. The FT wasCorrespondence to: G. Allen (grant.allen@manchester.ac.uk) often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and longrange sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore -coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75 • W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. Analysis of intra-campaign variability in atmospheric composition was not found to be significantly correlated with observed low-frequency variability in the large scale flow pattern; campaign-average interquartile ranges of Published by Copernicus Publications on behalf of the European Geosciences Union. 5238 G. Allen et al.: South East Pacific composition during VOCALS-REx CO, SO 2 and O 3 concentrations at all longitudes were observed to dominate over much smaller differences in median concentrations calculated between periods of different flow regimes. The campaign climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosolcloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx....
This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.