We show that oxy-fluoride glass ceramics, with typical composition, 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2):5.5(ZnF2): 3.5(ErF3) mol % have potential applications in telecommunications. Upon heat treatment, Er3+ nucleates the growth of the nanocrystalline β-PbF2, which acts as its host. Heat treatment at 440 °C for 5 h and at 390 °C for 3 h gave rise to ∼12 and ∼2.5 nm diameter crystals, respectively. The emission band of Er3+ in the 1.54 μm telecommunications window (4I13/2→4I15/2 transition, at the half-height width) was 75 nm in the former and 90 nm in the latter case, while I13/24↔I15/24 absorption and emission bands became wavelength divergent in both cases. Also in the latter case, the spectrum was flat from 1.53 to 1.56 μm. The evolution of spectral behavior is explained by changes in average site geometry of the Er3+ dopant, related to the α→β phase transition of PbF2, which is stimulated by heat treatment.
The crystallization of fluoro-silicate glasses obtained using high-purity SiO2, AlO1.5, CdF2, PbF2, ZnF2, and ErF3 has been investigated. Upon heat treatment, PbF2 nanocrystals form which host most of the Er3+ ions. The major peaks obtained by x-ray diffraction suggest that the nanocrystals are fluorite structured, but the low volume fraction of nanocrystals and line broadening due to their small size mean that unambiguous identification of the crystal structure is impossible. Therefore, atomistic simulation techniques have been performed to investigate the mechanism of incorporation of Er3+ in the PbF2 nanocrystals and polycrystalline (1−x)PbF2–xErF3 ceramics have been fabricated to study the expected phase assemblage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.