The authors show that light scattering from high-Q planar photonic crystal nanocavities can display Fano-like resonances corresponding to the excitation of localized cavity modes. By changing the scattering conditions, we are able to tune the observed lineshapes from strongly asymmetric and dispersivelike resonances to symmetric Lorentzians. Results are interpreted according to the Fano model of quantum interference between two coupled scattering channels. Combined measurements and line shape analysis on a series of silicon L3 nanocavities as a function of nearby hole displacement demonstrate that Q factors as high as 1.1×105 can be directly measured in these structures. Furthermore, a comparison with theoretically calculated Q factors allows to extract the rms deviation of hole radii due to weak disorder of the photonic lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.