Single-photons are key elements of many future quantum technologies, be it for the realisation of large-scale quantum communication networks 1 for quantum simulation of chemical and physical processes 2 or for connecting quantum memories in a quantum computer 3 . Scaling quantum technologies will thus require efficient, on-demand, sources of highly indistinguishable single-photons 4 . Semiconductor quantum dots inserted in photonic structures are ultrabright single photon sources [5][6][7] , but the photon indistinguishability is limited by charge noise induced by nearby surfaces 8 . The current state of the art for indistinguishability are parametric down conversion single-photon sources, but they intrinsically generate multiphoton events and hence must be operated at very low brightness to maintain high single photon purity 9,10 . To date, no technology has proven to be capable of providing a source that simultaneously generates near-unity indistinguishability and pure single-photons with high brightness. Here, we report on such devices made of quantum dots in electrically controlled cavity structures. We demonstrate on-demand, bright and ultra-pure single photon generation. Application of an electrical bias on deterministically fabricated devices 11,12 is shown to fully cancel charge noise effects. Under resonant excitation, an indistinguishability of 0.9956±0.0045 is evidenced with a g (2) (0)=0.0028±0.0012. The photon extraction of 65% and measured brightness of 0.154±0.015 make this source 20 times brighter than any source of equal quality. This new generation of sources open the way to a new level of complexity and scalability in optical quantum manipulation.
The authors show that light scattering from high-Q planar photonic crystal nanocavities can display Fano-like resonances corresponding to the excitation of localized cavity modes. By changing the scattering conditions, we are able to tune the observed lineshapes from strongly asymmetric and dispersivelike resonances to symmetric Lorentzians. Results are interpreted according to the Fano model of quantum interference between two coupled scattering channels. Combined measurements and line shape analysis on a series of silicon L3 nanocavities as a function of nearby hole displacement demonstrate that Q factors as high as 1.1×105 can be directly measured in these structures. Furthermore, a comparison with theoretically calculated Q factors allows to extract the rms deviation of hole radii due to weak disorder of the photonic lattice.
The scalability of a quantum network based on semiconductor quantum dots lies in the possibility of having an electrical control of the quantum dot state as well as controlling its spontaneous emission. The technological challenge is then to define electrical contacts on photonic microstructures optimally coupled to a single quantum emitter. Here we present a novel photonic structure and a technology allowing the deterministic implementation of electrical control for a quantum dot in a microcavity. The device consists of a micropillar connected to a planar cavity through one-dimensional wires; confined optical modes are evidenced with quality factors as high as 33,000. We develop an advanced in-situ lithography technique and demonstrate the deterministic spatial and spectral coupling of a single quantum dot to the connected pillar cavity. Combining this cavity design and technology with a diode structure, we demonstrate a deterministic and electrically tunable single-photon source with an extraction efficiency of around 53±9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.