Coronavirus disease (COVID-19) rapidly expands to a global pandemic and its impact on public health varies from country to country. It is caused by a new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is imperative for relapsing current antiviral therapeutics owing to randomized genetic drift in global SARS-CoV-2 isolates. A molecular mechanism behind the emerging genomic variants is not yet understood for the prioritization of selective antivirals. The present computational study was aimed to repurpose existing antivirals for Indian SARS-CoV-2 isolates by uncovering a hijack mechanism based on structural and functional characteristics of protein variants. Forty-one protein mutations were identified in 12 Indian SARS-CoV-2 isolates by analysis of genome variations across 460 genome sequences obtained from 30 geographic sites in India. Two unique mutations such as W6152R and N5928H found in exonuclease of Surat (GBRC275b) and Gandhinagar (GBRC239) isolates. We report for the first time the impact of folding rate on stabilizing/retaining a sequence-structure-function-virulence link of emerging protein variants leading to accommodate hijack ability from current antivirals. Binding affinity analysis revealed the effect of point mutations on virus infectivity and the drug-escaping efficiency of Indian isolates. Emodin and artinemol suggested herein as repurposable antivirals for the treatment of COVID-19 patients infected with Indian isolates. Our study concludes that a protein folding rate is a key structural and evolutionary determinant to enhance the receptor-binding specificity and ensure hijack ability from the prevalent antiviral therapeutics.
The symptomatology of novel Severe Acute Respiratory Syndrome Corona virus type 2 infection runs the entire gamut of mild to moderate and serious illness among the affected individuals. As listed in recent literature, respiratory, cardiovascular, gastrointestinal, olfactory and gustatory systems are commonly involved. With the growing knowledge about the disease, varied manifestations have been identified and lately, otorhinolaryngology dysfunctions in COVID 19 have been described. Hearing loss in COVID era is one of the emerging areas of concern and calls for further research in the field for the better understanding and treatment of this entity. This study was designed to assess the audiological profile among 100 mild to moderately affected COVID-19 individuals, so as to make a contribution to the emerging literature on otologic manifestations in COVID 19. In our case series, high frequency hearing loss and referred OAE was noted among significant number of COVID 19 positive patients. This was even observed in patients without any otologic symptoms. Hence, early identification and intervention if required helps to give a better quality of life to the patient.
Methanobacterium formicicum (Methanobacteriaceae family) is an endosymbiotic methanogenic Archaean found in the digestive tracts of ruminants and elsewhere. It has been significantly implicated in global CH 4 emission during enteric fermentation processes. In this review, we discuss current genomic and metabolic aspects of this microorganism for the purpose of the discovery of novel veterinary therapeutics. This microorganism encompasses a typical H 2 scavenging system, which facilitates a metabolic symbiosis across the H 2 producing cellulolytic bacteria and fumarate reducing bacteria. To date, five genome-scale metabolic models (iAF692, iMG746, iMB745, iVS941 and iMM518) have been developed. These metabolic reconstructions revealed the cellular and metabolic behaviors of methanogenic archaea. The characteristics of its symbiotic behavior and metabolic crosstalk with competitive rumen anaerobes support understanding of the physiological function and metabolic fate of shared metabolites in the rumen ecosystem. Thus, systems biological characterization of this microorganism may provide a new insight to realize its metabolic significance for the development of a healthy microbiota in ruminants. An in-depth knowledge of this microorganism may allow us to ensure a long term sustainability of ruminant-based agriculture.
Bacterial ADP-ribosyltransferases (BADPRTs) are extensively contributed to determine the strain-specific virulence state and pathogenesis in human hosts. Understanding molecular evolution and functional diversity of the BADPRTs is an important standpoint to describe the fundamental behind in the vaccine designing for bacterial infections. In the present study, we have evaluated the origin and functional evolution of conserved domains within the BADPRTs by analyzing their sequence-function relationship. To represent the evolution history of BADPRTs, phylogenetic trees were constructed based on their protein sequence, structure and conserved domains using different evolutionary programs. Sequence divergence and genetic diversity were studied herein to deduce the functional evolution of conserved domains across the family and superfamily. The results of sequence similarity search have shown that three hypothetical proteins (above 90%) were identical to the members of BADPRTs and their functions were annotated by phylogenetic approach. Phylogenetic analysis of this study has revealed the family members of BADPRTs were phylogenetically related to one another, functionally diverged within the same family, and dispersed into closely related bacteria. The presence of core substitution pattern in the conserved domains would determine the family-specific function of BADPRTs. Functional diversity of the BADPRTs was exclusively distinguished by Darwinian positive selection (diphtheria toxin C and pertussis toxin S) and neutral selection (arginine ADP-ribosyltransferase, enterotoxin A and binary toxin A) acting on the existing domains. Many of the family members were sharing their sequence-specific features from members in the arginine ADP-ribosyltransferase family. Conservative functions of members in the BADPRTs have shown to be expanded only within closely related families, and retained as such in pathogenic bacteria by evolutionary process (domain duplication or recombination events). Hence, we conclude that evolutionary significance of the members in the BADPRTs would provide an insight for experimental set-up on site-directed mutagenesis and vaccine engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.