Composites of unmodified or oxidized carbon nano-onions (CNOs/ox-CNOs) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X-ray photoelectron spectroscopy characterization is performed for pristine and ox-CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox-CNO/PEDOT:PSS composites.
Dielectric behaviour of BiFeO 3 ceramics, obtained by hot-pressing of nanopowders produced by mechanochemical synthesis from Bi 2 O 3 and Fe 2 O 3 oxides (weight ratio 2:1), was studied in the temperature range 125-575 K. The ceramics was found to exhibit step-like dielectric response ε*(T) with high permittivity values, similar to the behaviour of materials with giant dielectric permittivity. Three overlapping relaxation processes contribute to the dielectric response: i) relaxation in the lowtemperature range (220-420 K), characterized by activation energy of 0.4 eV, ii) relaxation in the temperature range 320-520 K with activation energy of 1.0 eV and iii) broad dielectric anomaly in the vicinity of 420 K, which disappears after 1 h annealing at 775 K. The lowtemperature relaxation is ascribed to the carrier hopping process between Fe 2+ and Fe 3+ ions. The presence of mixed valence of the Fe ions was proved by X-ray photoelectron spectroscopy. Dielectric relaxation in the middle-temperature range is considered as a result of grain boundary effect and internal barrier layers related to Bi 25 FeO 40 phase as verified by X-ray diffraction. The high-temperature dielectric anomaly we relate to short-range hopping of ordered oxygen vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.