We report on the development of solution-processed ZnO-based dye-sensitized solar cells. We fabricate mesoporous ZnO electrodes from sol-gel processed nanoparticles, which are subsequently sensitized with conventional ruthenium complexes and infiltrated with the solid-state hole transporter medium 2, 2', 7, 7'-tetrakis-(N, N-di-p-methoxyphenylamine)-9, 9'-spirobifluorene (spiro-OMeTAD). Starting from ZnO nanorods synthesized from solution, we investigate the porous ZnO film morphology using various precursor formulations. The nature of the polymeric additive used in the initial ZnO formulation, as well as the ZnO electrode sintering treatment, is varied and its influence on device performance and charge dynamics, probed by transient perturbation techniques, is discussed. We show that using ethyl-cellulose in the initial ZnO formulation is responsible for an improved dye loading on the ZnO porous electrode, while a gradual sintering step at 350 degrees C is suitable for the proper removal of the organic phases that can be found in the ZnO films after their deposition by spin-coating. Using only 800 nm thick porous ZnO electrodes sensitized by N719, the best performing device exhibits a short-circuit current density of 2.43 mA cm(-2) under simulated solar emission of (100 mW cm(-2)), associated with an overall power conversion efficiency of 0.50%.
Deagglomeration of ultrafine powders poses an important challenge towards their efficient and effective utilization. In the present study, we investigate the effect of frequency on the hydrodynamics of pulsed fluidized beds of ultrafine powders that show strong agglomeration behavior. We have carefully selected square waves of three different frequencies: 0.05 Hz, 0.10 Hz, and 0.25 Hz. The lowest frequency used here allowed the fluidized bed to settle completely before another pulse was introduced whilst the highest frequency ensured that the bed remained in a state of continuous turbulence between occurrences of consecutive pulses. On the other hand, the intermediate frequency pulse was just sufficient to complete the process of bed collapse before the start of the next pulse. Both local and global bed dynamics in all the three cases were rigorously monitored using fast response pressure transducers. The pressure transient data during the bed collapse were processed using the bed collapse model reported in the literature to compute the effective hydrodynamic diameter of agglomerates. Though there was substantial decrease in the agglomerate size, the effect of the frequency appeared to be rather insignificant as the global pressure transients remained rather insensitive to the change of the fluidization velocity.
The paper studies the dynamics of the classical susceptible-infectious-removed (SIR) model when applied to the transmission of COVID-19 disease. The model includes the classical linear incidence rate but considers a nonlinear removal rate that depends on the hospital-bed population ratio. The model also includes the effects of media on public awareness. We prove that when the basic reproduction number is less than unity the model can exhibit a number of nonlinear phenomena including saddle-node, backward, and Hopf bifurcations. The model is fitted to COVID-19 data pertinent to Saudi Arabia. Numerical simulations are provided to supplement the theoretical analysis and delineate the effects of hospital-bed population ratio and public awareness on the control of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.