Most traits and disorders have a multifactorial background indicating that they are controlled by environmental factors as well as an unknown number of quantitative trait loci (QTLs). The identification of mutations underlying QTLs is a challenge because each locus explains only a fraction of the phenotypic variation. A paternally expressed QTL affecting muscle growth, fat deposition and size of the heart in pigs maps to the IGF2 (insulin-like growth factor 2) region. Here we show that this QTL is caused by a nucleotide substitution in intron 3 of IGF2. The mutation occurs in an evolutionarily conserved CpG island that is hypomethylated in skeletal muscle. The mutation abrogates in vitro interaction with a nuclear factor, probably a repressor, and pigs inheriting the mutation from their sire have a threefold increase in IGF2 messenger RNA expression in postnatal muscle. Our study establishes a causal relationship between a single-base-pair substitution in a non-coding region and a QTL effect. The result supports the long-held view that regulatory mutations are important for controlling phenotypic variation.
We investigated the nutritional effects on carcass traits, gene expression and DNA methylation in a three generation Large White pig feeding experiment. A group of experimental (E) F0 boars were fed a standard diet supplemented with high amounts of methylating micronutrients whereas a control group (C) of F0 boars received a standard diet. These differentially fed F0 boars sired F1 boars which then sired 60 F2 pigs. Carcass traits were compared between 36 F2 descendants of E F0 boars and 24 F2 descendants of C F0 boars. The two F2 offspring groups differed with respect to backfat percentage (P = 0.03) and tended to differ with respect to adipose tissue (P = 0.09), fat thickness at the 10th rib (P = 0.08) and at the croup (P = 0.09) as well as percentages of shoulder (P = 0.07). Offspring from the experimental F0 boars had a higher percentage of shoulder and were leaner compared to the control group. Gene expression profiles showed significant twofold differences in mRNA level between 8 C F2 offspring and 8 E F2 offspring for 79, 64 and 53 genes for muscle, liver and kidney RNA, respectively. We found that in liver and muscle respective pathways of lipid metabolism and metabolic pathway were over-represented for the differentially expressed genes between these groups. A DNA methylation analysis in promoters of differentially expressed genes indicated a significant difference in DNA methylation at the IYD gene. If these responses on carcass traits, gene expression and DNA methylation withstand verification and can indeed be attributed to transgenerational epigenetic inheritance, it would open up pioneering application in pork production and would have implications for human health.
A genetic study of 32 local Chinese, three foreign pig breeds [Duroc (DU), Landrace and Yorkshire], and two types of wild boar (Hainan and Dongbei wild boar) based on 34 microsatellite loci was carried out to clarify the phylogeny of Chinese indigenous pig breeds. The allele frequencies, effective numbers of alleles, and the average heterozygosity within populations were calculated. The results showed that the genetic variability of the Lingao pig was the largest, while the Jiaxing pig was the lowest. The greatest distance between domestic pigs was found between Shanggao and DU pig and the shortest was found between Wuzhishan and Lingao pig, respectively. A neighbour-joining tree constructed from Modified Cavalli-Sforza genetic distances divided Chinese pigs into two clusters; four subclusters were also identified. Our results only partly agree with the traditional types of classification and also provide a new relationship among Chinese local pig breeds. Our data also confirmed that Chinese pig breeds have a different origin from European/American breeds and can be utilized in programmes that aim to maintain Chinese indigenous pig breeds.
IGF2 is the major candidate gene for a paternally expressed Quantitative Trait Locus (QTL) in the pig primarily affecting muscle development. Here we report two sequence contigs together comprising almost 90 kb containing the INS-IGF2 and H19 genes. A comparative sequence analysis of the pig, human, and mouse genomic sequences was conducted to identify the exon/intron organization, all promoters, and other evolutionarily conserved elements. RT-PCR analysis showed that IGF2 transcripts originated from four different promoters and included various combinations of seven untranslated exons together with three coding exons, in agreement with previous findings in other mammals. The observed sequence similarity in intronic and intragenic regions among the three species is remarkable and is most likely explained by the complicated regulation of imprinting and expression of these genes. The general trend was, as expected, a higher sequence similarity between human and pig than between these species and the mouse, but a few exceptions to this rule were noted. This genomic region exhibits several striking features, including a very high GC content, many CpG islands, and a low amount of interspersed repeats. The high GC and CpG content were more pronounced in the pig than in the two other species. The results will facilitate the further characterization of this important QTL in the pig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.