Perturbations induced by malathion, methylparathion and parathion on the physicochemical properties of dipalmitoylphosphatidylcholine (DPPC) were studied by fluorescence anisotropy of DPH and DPH-PA and by differential scanning calorimetry (DSC). Methylparathion and parathion (50 microM) increased the fluorescence anisotropy evaluated by DPH-PA and DPH, either in gel or in the fluid phase of DPPC bilayers, but mainly in the fluid phase. Parathion is more effective than methylparathion. On the other hand, malathion had almost no effect. All the three xenobiotics displaced the phase transition midpoint to lower temperature values and broadened the phase transition profile of DPPC, the effectiveness following the sequence: parathion>methylparathion>>malathion. A shifting and broadening of the phase transition was also observed by DSC. Furthermore, at methylparathion/lipid molar ratio of 1/2 and at parathion/lipid molar ratio of 1/7, the DSC thermograms displayed a shoulder in the main peak, in the low temperature side, suggesting coexistence of phases. For higher ratios, the phase transition profile becomes sharp as the control transition, but the midpoint is shifted to the previous shoulder position. Conversely to methylparathion and parathion, malathion did not promote phase separation. The overall data from fluorescence anisotropy and calorimetry indicate that the degree of effect of the insecticides on the physicochemical membrane properties correlates with toxicity to mammals. Therefore, the in vivo effects of organophosphorus compounds may be in part related with their ability to perturb the phospholipid bilayer structure, whose integrity is essential for normal cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.