Segmented thermoplastic polyurethanes (PUs) were synthetized using macrodiols with different functional groups (carbonate, ester, and /or ether) as a segment with a molar mass of 1000 and 2000 g/mol, and 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butanediol as a rigid segment. The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties and retention of tensile properties under degradation by heat, oil, weather, and water. Different techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR), and synchrotron small-angle X-ray scattering (SAXS) were used to determine rigid-flexible segments’ phase behaviour. Retention of tensile properties determines the stability of the samples under different external factors. This work reveals that pure polycarbonate-based macrodiols induce the highest degree of phase miscibility, better tensile properties, hardness shore A, and retention of tensile properties under external agents.
New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped ‘few-layer’ graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.