High-Level Synthesis deals with the translation of algorithmic descriptions into an RTL implementation. It is highly multiobjective in nature, necessitating trade-offs between mutually conflicting objectives such as area, power and delay. Thus design space exploration is integral to the High Level Synthesis process for early assessment of the impact of these trade-offs. We propose a methodology for multi-objective optimization of Area, Power and Delay during High Level Synthesis of data paths from Data Flow Graphs (DFGs). The technique performs scheduling and allocation of functional units and registers concurrently. A novel metric based technique is incorporated into the algorithm to estimate the likelihood of a schedule to yield low-power solutions. A true multi-objective evolutionary technique, "Nondominated Sorting Genetic Algorithm II" (NSGA II) is used in this work. Results on standard DFG benchmarks indicate that the NSGA II based approach is much faster than a weighted sum GA approach. It also yields superior solutions in terms of diversity and closeness to the true Pareto front. In addition a framework for applying another evolutionary technique: Weighted Sum Particle Swarm Optimization (WSPSO) is also reported. It is observed that compared to WSGA, WSPSO shows considerable improvement in execution time with comparable solution quality.
Parallel and distributed systems play an important part in the improvement of high performance computing. In these type of systems task scheduling is a key issue in achieving high performance of the system. In general, task scheduling problems have been shown to be NP-hard. As deterministic techniques consume much time in solving the problem, several heuristic methods are attempted in obtaining optimal solutions. This paper presents an application of Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and a Non-dominated Sorting Particle Swarm Optimization Algorithm (NSPSO) to schedule independent tasks in a distributed system comprising of heterogeneous processors. The problem is formulated as a multi-objective optimization problem, aiming to obtain schedules achieving minimum makespan and flowtime. The applied algorithms generate Pareto set of global optimal solutions for the considered multi-objective scheduling problem. The algorithms are validated against a set of benchmark instances and the performance of the algorithms evaluated using standard metrics. Experimental results and performance measures infer that NSGA-II produces quality schedules compared to NSPSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.