There is an urgent need to evaluate the presence of toxicants in waters used for human consumption and to develop strategies to reduce and prevent their contamination. The International Development Research Centre undertook an intercalibration project to develop and validate a battery of bioassays for toxicity testing of water samples. The project was carried out in two phases by research institutions from eight countries that formed the WaterTox network. Results for the first phase were reported in the special September 2000 issue of Environmental Toxicology. Phase II involved toxicity screening tests of environmental and blind samples (chemical solutions of unknown composition to participating laboratories) using the following battery: Daphnia magna, Hydra attenuata, seed root inhibition with Lactuca sativa, and Selenastrum capricornutum. This battery was also used to assess potential toxicity in concentrated (10x) water samples. Results are presented for a set of six blind samples sent to the participating laboratories over a 1-year period. Analyses were performed for each bioassay to evaluate variations among laboratories of responses to negative controls, violations of test quality control criteria, false positive responses induced by sample concentration, and variability within and between labs of responses to toxic samples. Analyses of the data from all bioassays and labs provided comparisons of false positive rates (based on blind negative samples), test sensitivities to a metal or organic toxicant, and interlaboratory test variability. Results indicate that the battery was reliable in detecting toxicity when present. However, some false positives were identified with a concentrated soft-water sample and with the Lactuca and Hydra (sublethal end-point) tests. Probabilities of detecting false positives for individual and combined toxic responses of the four bioassays are presented. Overall, interlaboratory comparisons indicate a good reliability of the battery.
Three anaerobic fluidized bed reactors at 37 degrees C were utilized to observe the effects of startup and operational procedures on biomass attachment. Using a meat-based synthetic waste and stepped-loading regime, the influences of synthetic polymer addition and maintenance of anaerobiosis during startup were investigated. Subsequently, increasing bed expansions were applied to assess shear effects. Synthetic polymer addition enhanced biomass retention but did not improve process performance. Maintenance of a reduced environment ameliorated fluctuating process parameters during start up and aided biomass retention and substrate removal. A bed expansion of 5% was detrimental to biomass attachment and COD removal but system stability was maintained at expansions between 10% and 30%. Startup was achieved in 56 days. Anaerobiosis appeared to enhance the initial evolution of a stable, well-adapted microbial population, whereas polymer addition interfered with this. Moderate bed expansions had negligible effects on attachment and performance.
Because of rapid population growth, industrial development, and intensified agricultural production increasing amounts of chemicals are being released into the environment, polluting receiving water bodies around the world. Given the potential health risk associated with the presence of toxicants in water sources used for drinking yet the scarcity of available data, there is a need to evaluate these waters and develop strategies to reduce and prevent their contamination. The present study examined the applicability of a battery of simple, inexpensive bioassays in environmental management and the relevance of the test results in establishing the toxicological quality of water sources and drinking water within the framework of the eight-country WaterTox Network, sponsored by the International Development Research Centre, Ottawa, Canada. Seventy-six samples were collected from surface and groundwater sources and seven samples from drinking water treatment plants. Each sample was tested with a core battery of bioassays (Daphnia magna, Hydra attenuata, and Lactuca sativa root inhibition tests) and a limited set of physical and chemical parameters. In addition, three labs included the Selenastrum capricornutum test. When no toxic effects were found with the battery, samples were concentrated 10x using a solid-phase extraction (SPE) procedure. Nonconcentrated natural water samples produced a toxic response in 24% of cases with all three core bioassays. When all bioassays are considered, the percentage of raw samples showing toxicity with at least one bioassay increased to 60%. Of seven treated drinkingwater samples, four showed toxicity with at least one bioassay, raising the possibility that treatment processes in these instances were unable to remove toxic contaminants. The Daphnia magna and Hydra attenuata tests indicated a high level of sensitivity overall. Although only three of the eight countries used S. capricornutum, it proved to be an efficient and reliable bioassay for toxicity assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.