Abstract. We have examined the hypothesis that neuronal programmed cell death requires a genetic program; we used a model wherein rat sympathetic neurons maintained in vitro are deprived of NGF and subsequently undergo apoptosis. To evaluate gene expression potentially necessary for this process, we used a PCR-based technique and in situ hybridization; patterns of general gene repression and selective gene induction were identified in NGF-deprived neurons. A temporal cascade of induced genes included "immediate early genes;' which were remarkable in that their induction occurred hours after the initial stimulus of NGF removal and the synthesis of some required ongoing protein synthesis. The cascade also included the cell cycle gene c-myb and the genes encoding the extracellular matrix proteases transin and collagenase. Concurrent in situ hybridization and nuclear staining revealed that while c-jun was induced in most neurons, c-fos induction was restricted to neurons undergoing chromatin condensation, a hallmark of apoptosis. To evaluate the functional role of the proteins encoded by these genes, neutralizing antibodies were injected into neurons. Antibodies specific for either c-Jun or the Fos family (c-Fos, Fos B, Fra-1, and Fra-2) protected NGF-deprived neurons from apoptosis, whereas antibodies specific for Jun B, Jun D, or three nonimmune antibody preparations had no protective effect. Because these induced genes encode proteins ranging from a transcription factor necessary for death to proteases likely involved in tissue remodeling concurrent with death, these data may outline a genetic program responsible for neuronal programmed cell death.
Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region Ti) efficiently bound TBP. TEF-1 bound neither region Ti nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383. The Gal4 fusions demonstrated that no region of T antigen could activate a promoter containing Gal4-binding sites, suggesting that T antigen does not contain an activation domain of the type defined by this assay. However, the Gal4 fusion proteins maintained their ability to activate promoters known to be activated by wild-type T antigen. The fusion with region Ti, which binds only TBP, modestly activated the SV40 late promoter and the simple TEF-1/TATA promoter. Region T5, which binds both TBP and TEF-1, activated each of these promoters to levels equivalent to that of wild-type T antigen. The correlation between the binding of both TEF-1 and TBP and the ability to mediate wild-type levels of transcriptional activation suggests that T antigen causes activation through direct interactions with multiple factors in the transcription complex.The simian virus 40 (SV40) early-gene product large T antigen is a potent viral oncoprotein that interacts with a number of cellular proteins known to affect cell growth and gene expression. These interactions may account for the wide variety of functions attributed to T antigen (reviewed in references 14, 28, and 36). One of these functions is the transcriptional activation of both viral and cellular promoters, which was first detected through studies of activation of the SV40 late promoter (Fig. 1A) (7, 24). Subsequently, large T antigen was shown to be a promiscuous transcriptional activator because of its effect on many viral and cellular promoters (1,17,31,42, 52). This activation of cellular promoters may be as...
The early proteins of simian virus 40 (SV40) large T and small t antigen (T/t antigen) can each cause the transcriptional activation of a variety of cellular and viral promoters. We showed previously that simian cellular DNA-binding factors (the Band A factors) bind to sequences within the SV40 late promoter which are important for transcriptional activation in the presence of the SV40 early proteins. Band A factors isolated from simian cells which produce T/t antigen (COS cells or SV40-infected CV-1 cells) have altered binding properties in comparison with the factors from normal simian cells (CV-1). This suggests that the transcriptional activation mediated by T/t antigen may be due to either modification of existing factors or induction of new members of a family of factors. We have purified the Band A factors from both COS and CV-1 cells and have determined the binding site by methylation interference and DNase protection footprinting. The COS cell factors have altered chromatographic properties on ion-exchange columns and have higher-molecular-weight forms than the CV-1 cell factors. Major forms of the CV-1 factors migrate between 20 and 24 kilodaltons, while the COS factors migrate between 20 and 28 kilodaltons. The binding sites for the factors from CV-1 and COS cells are similar, covering a rather broad region within the 72-base-pair repeat comprising the AP-1 site and the two-octamer binding protein (OBP100/Oct 1) sites, OBP I and OBP H. Specific binding competition analyses indicate that the two general regions within the binding site (the AP-1-OBP II site and the OBP I site) each retain partial binding ability; however, the factors bind best when the two regions are adjacent in a relatively specific spatial arrangement. The binding site for the Band A factors corresponds very well to sequences necessary for the activation of the late promoter as defined by deletion and base substitution mutagenesis studies (
Simian virus 40 (SV40) large T antigen is a promiscuous transcriptional activator of many viral and cellular promoters. The SV40 late promoter, a primary target for T-antigen transcriptional activation, contains a previously described T-antigen-activatable binding site (SV40 nucleotides 186 to 225). The T-antigenactivatable binding site element contains overlapping octamer (Oct)and SPH (TEF-1)-binding sites (Oct/SPH site). Using this Oct/SPH site as an upstream element in a simple promoter, we show that the SPH sites are necessary for transcriptional activation by T antigen. In addition, we show that when Oct 1 is overproduced, it can eliminate T-antigen-mediated transcriptional activation, as well as basal activity, from the simple Oct/SPH promoter as well as the intact SV40 late promoter. This suggests that one function of T antigen in transcriptional activation of the late promoter is to alter factor binding at the Oct/SPH region to favor binding of factors to the SPH sites.
Plasma factor XIII (FXIII) is responsible for stabilization of fibrin clot at the final stage of blood coagulation. Because FXIII has also been shown to modulate inflammation and endothelial permeability, we hypothesized that FXIII diminishes multiple organ dysfunction caused by gut I/R injury. A model of superior mesenteric artery occlusion (SMAO) was used to induce gut I/R injury. Rats were subjected to 45-min SMAO or sham SMAO and treated with recombinant human FXIII A2 subunit (rFXIII) or placebo at the beginning of the reperfusion period. Lung permeability, lung and gut myeloperoxidase activity, gut histology, neutrophil respiratory burst, and microvascular blood flow in the liver and muscles were measured after a 3-h reperfusion period. The effect of activated rFXIII on transendothelial resistance of human umbilical vein endothelial cells was tested in vitro. Superior mesenteric artery occlusion–induced lung permeability as well as lung and gut myeloperoxidase activity was significantly lower in rFXIII-treated versus untreated animals. Similarly, rFXIII-treated rats had lower neutrophil respiratory burst activity and ileal mucosal injury. Rats treated with rFXIII also had higher liver microvascular blood flow compared with the placebo group. Superior mesenteric artery occlusion did not cause FXIII consumption during the study period. In vitro, activated rFXIII caused a dose-dependent increase in human umbilical vein endothelial cell monolayer resistance to thrombin-induced injury. Thus, administration of rFXIII diminishes SMAO-induced multiple organ dysfunction in rats, presumably by preservation of endothelial barrier function and the limitation of polymorphonuclear leukocyte activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.