The uptake in vivo of chylomicrons and beta-migrating very-low-density lipoprotein (beta-VLDL) by rat liver, which is primarily carried out by parenchymal cells, is inhibited, 5 min after injection, to respectively 35 and 8% of the control values after preinjection of lactoferrin. The decrease in the uptake of lipoproteins by the liver caused by lactoferrin is a specific inhibition of uptake by parenchymal cells. Competition studies in vitro demonstrate that chylomicron remnants and beta-VLDL compete for the same recognition site on parenchymal cells. Data obtained in vivo together with the competition studies performed in vitro indicate that chylomicron remnants and beta-VLDL interact specifically with the same remnant receptor. Hepatic uptake of 125I-labelled-alpha 2-macroglobulin in vivo, mediated equally by parenchymal and endothelial cells, is not decreased by preinjection of lactoferrin and no effect on the parenchymal-cell-mediated uptake is found. In vitro, alpha 2-macroglobulin and chylomicron remnants or beta-VLDL show no cross-competition. Culturing of parenchymal cells for 24-48 h leads to a decrease in the cell association of alpha 2-macroglobulin to 26% of the initial value, while the cell association of beta-VLDL with the remnant receptor is not influenced. It is concluded that beta-VLDL and chylomicron remnants are recognized by a specific remnant receptor on parenchymal liver cells, while uptake of alpha 2-macroglobulin by liver is carried out by a specific receptor system (presumably involving the LDL-receptor-related protein) which shows properties that are distinct from those of the remnant receptor.
The role of phosphatidylcholine (PC) hydrolysis in activation of the mitogen-activated protein kinase (MAPK) pathway by platelet-derived growth factor (PDGF) was studied in Rat-1 fibroblasts. PDGF induced the transient formation of phosphatidic acid, choline, diacylglycerol (DG), and phosphocholine, the respective products of phospholipase D (PLD) and phospholipase C (PC-PLC) activity, with peak levels at 5-10 min. PLDcatalyzed transphosphatidylation (with n-butyl alcohol) diminished DG formation at 5 min but not at later stages of PDGF stimulation. Phorbol ester-induced down-regulation of protein kinase C (PKC) completely blocked PLD activation but not the formation of DG and phosphocholine at 10 min of PDGF stimulation. Collectively, these data indicate that PDGF activates both PLD and PC-PLC. In contrast, epidermal growth factor did not activate PC-PLC in these cells, and it activated PLD only weakly. DG formation by itself, through Bacillus cereus PC-PLC treatment of cells, was sufficient to mimic PDGF in activation of MAPK independent of phorbol ester-sensitive PKC. Since PKC down-regulation blocked PDGF-induced PLD but not MAPK activation, we conclude that PLD is not involved in MAPK signaling. In contrast, MAPK activation by exogenous (bacterial) PLD was not affected by PKC down-regulation, indicating that signals evoked by exogenous PLD differ from endogenous PLD. D609 (2-10 g/ml), an inhibitor of PC-PLC, blocked PDGF-but not epidermal growth factor-induced MAPK activation. However, D609 should be used with caution since it also affects PLD activity. The results suggest that PC-PLC rather than PLD plays a critical role in the PDGF-activated MAPK pathway.
14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-ζ (PKC-ζ) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-ζ-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipitation experiments in COS cells revealed that complex formation between PKC-ζ and Raf-1 is mediated strongly by the 14-3-3β and -θ isotypes, but not by 14-3-3ζ. Far-Western blotting revealed that 14-3-3 binds PKC-ζ directly at its regulatory domain, where a S186A mutation in a putative 14-3-3-binding domain strongly reduced the binding and the complex formation with 14-3-3β and Raf-1. Treatment of PKC-ζ with lambda protein phosphatase also reduced its binding to 14-3-3β in vitro. Preincubation of an immobilized Raf-1 construct with 14-3-3β facilitated PKC-ζ binding. Together, the results suggest that 14-3-3 binds both PKC-ζ (at phospho-Ser-186) and Raf-1 in a ternary complex. Complex formation was much stronger with a kinase-inactive PKC-ζ mutant than with wild-type PKC-ζ, supporting the idea that kinase activity leads to complex dissociation. 14-3-3β and -θ were substrates for PKC-ζ, whereas 14-3-3ζ was not. Phosphorylation of 14-3-3β by PKC-ζ negatively regulated their physical association. 14-3-3β with its putative PKC-ζ phosphorylation sites mutated enhanced co-precipitation between PKC-ζ and Raf-1, suggesting that phosphorylation of 14-3-3 by PKC-ζ weakens the complex in vivo. We conclude that 14-3-3 facilitates coupling of PKC-ζ to Raf-1 in an isotype-specific and phosphorylation-dependent manner. We suggest that 14-3-3 is a transient mediator of Raf-1 phosphorylation and activation by PKC-ζ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.