Little is known about the phenotypic changes that occur in vascular smooth muscle cells (SMCs) as the developing aorta undergoes the transition from a loosely organized, highly replicative tissue to a morphologically mature, quiescent tissue. In the present study, we have characterized the in vivo pattern of SMC replication during intrauterine and neonatal aortic development in the rat and have cultured and assessed the in vitro growth properties of embryonic, fetal, and neonatal vascular SMCs. Embryonic SMCs, which exhibited a very high in vivo replication rate (75% to 80% per day), demonstrated a significant potential for self-driven replication, as assessed by the ability to proliferate under serum-deprived conditions. Several lines of evidence suggest that the autonomous growth of SMCs in the "embryonic growth phenotype" may be driven by a unique mechanism independent of known adult SMC mitogens: embryonic SMC replication was not associated with the detectable secretion of mitogenic activity capable of stimulating adult SMCs, and embryonic SMCs were mitogenically unresponsive to a variety of known adult SMC growth factors. The capacity for self-driven growth was lost by embryonic day 20, suggesting that important changes in gene expression and phenotype occur in developing SMCs between embryonic days 18 and 20. Taken together, the data describe a unique embryonic growth phenotype of vascular SMCs and suggest that the replication of aortic SMCs during intrauterine development is self driven, self regulated, and controlled by a developmental timing mechanism. The conversion of SMCs from the embryonic to the late fetal/adult growth phenotype will likely be found to be an important component of a developmental system controlling vascular morphogenesis.
Vascular smooth muscle cells (SMCs) are very quiescent in the mature vessel and exhibit a remarkable phenotype-dependent diversity in gene expression that may reflect the growth responsiveness of these cells under a variety of normal and pathological conditions. In this report, we describe the expression pattern of Oct-1, a member of a family of transcription factors involved in cell growth processes, in cultured and in in vivo SMCs. Oct-1 mRNA was undetectable in the contractile-state in vivo SMCs; was induced upon disruption of in vivo SMC-extracellular matrix interactions; and was constitutively expressed by cultured SMCs. Oct-1 transcripts were repressed when cultured SMCs were plated on Engelbreth-Holm-Swarm tumor-derived basement membranes (EHS-BM) but were rapidly induced after disruption of SMC-EHS-BM contacts; reexpression was regulated at the transcriptional level. To identify the EHS-BM component involved in the active repression of Oct-1 mRNA expression, SMCs were plated on laminin, type IV collagen, fibronectin, or perlecan matrices. Oct-1 mRNA levels were readily detectable when SMCs were cultured on matrices composed of laminin, type IV collagen, or fibronectin but were repressed when SMCs were cultured on perlecan matrices. Finally, the Oct-1-suppressing activity of EHS-BM was sensitive to heparinase digestion but not to chondroitinase ABC or hyaluronidase digestion, suggesting that the heparan sulfate side chains of perlecan play a biologically important role in negatively regulating the expression of Oct-1 transcripts.
A variety of evidence suggests that vascular smooth muscle cells (SMC) exhibit a more immature phenotype when stimulated by injury to replicate in the adult. One growth characteristic common to immature (embryonic, fetal, and neonatal) SMC is a markedly reduced responsiveness to platelet-derived growth factor (PDGF) and other mitogenic stimuli. Here we demonstrate that SMC isolated from the 14-day neointima of experimentally injured carotid arteries exhibit a similar growth phenotype. The proliferative responses of neointimal cells to the BB homodimer of PDGF, which interacts with both forms of the PDGF receptor, were up to twenty-fold less (as assessed by BrdU immunocytochemistry) than that of adult control tunica media cells over a wide range of PDGF concentrations. Paradoxically, these cells expressed abundant mRNA for the alpha- and beta-subunits of the PDGF receptor (by RT-PCR) and expressed abundant PDGF receptor protein (by Western blotting). Addition of PDGF-BB to neointimal SMC induced significant autophosphorylation of the PDGF receptor, suggesting that the PDGF receptors were fully functional. The chemotactic responses of neointimal SMC to PDGF, in in vitro migration assays, were identical to that of control medial cells. The data further establish the existence of vascular SMC phenotypes characterized by a refractoriness to growth stimulation by specific mitogens, and provide further evidence for the reiteration of developmentally regulated programs following vascular injury in vivo.
During the development of pulmonary hypertension, vascular cell proliferation closely parallels the rise in pulmonary intravascular pressure. The possible direct physical effect that elevated pressures may have on inducing vascular cell proliferation in pulmonary hypertension is unclear. To address this question, static force (0, 1, 5, and 10 g) was applied to hilar pulmonary arterial rings cultured in a serum-free medium. Incorporation of the thymidine analogue, bromodeoxyuridine (BrdU), into medial and adventitial cells was analyzed by immunohistochemistry. Medial cell BrdU incorporation (%positive cells) was increased (P < 0.0001) at all levels of force compared with 0-g controls (unmounted and mounted, but without applied force) (unmounted: 0.65 +/- 0.08; mounted: 0 g, 1.8 +/- 0.39; 1 g, 3.7 +/- 0.35; 5 g, 5.2 +/- 0.43; 10 g, 2.8 +/- 0.17). Hypoxia exposure and endothelial denudation of arteries attenuated (P < 0.05) tension-induced medial cell BrdU labeling (2.5 +/- 0.96 and 3.3 +/- 0.63, respectively) compared with control arteries (6.0 +/- 0.54). Nifedipine reduced tension-induced medial cell BrdU incorporation (P < 0.05). There was no difference in DNA synthesis in adventitial cells at the various levels of force, although hypoxia decreased adventitial cell BrdU incorporation overall (P < 0.05). We conclude that static wall tension may be an important direct stimulus for medial cell DNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.