This paper describes the implementation of a structural health monitoring (SHM) method for mechanical components and structures in composite materials with a focus on carbon-fiber-overwrapped pressure vessels (COPVs) used in the aerospace industry. Two flex arrays of polyvinylidene fluoride (PVDF) interdigital transducers have been designed, realized, and mounted on the COPV to generate guided Lamb waves (mode A0) for damage assessment. We developed a custom electronic instrument capable of performing two functions using the same transducers: passive-mode detection of impacts and active-mode damage assessment using Lamb waves. The impact detection is based on an accurate evaluation of the time of arrival and was successfully tested with low-velocity impacts (7 and 30 J). Damage detection and progression is based on the calculation of a damage index matrix which compares a set of signals acquired from the transducers with a baseline. This paper also investigates the advantage of tuning the active-mode frequency to obtain the maximum transducer response in the presence of structural variations of the specimen, and therefore, the highest sensitivity to damage.
Composite material structures are commonly used in many industrial sectors (aerospace, automotive, transportation), and can operate in harsh environments where impacts with other parts or debris may cause critical safety and functionality issues. This work presents a method for improving the accuracy of impact position determination using acoustic source triangulation schemes based on the data collected by piezoelectric sensors attached to the structure. A novel approach is used to estimate the Differential Time-of-Arrival (DToA) between the impact response signals collected by a triplet of sensors, overcoming the limitations of classical methods that rely on amplitude thresholds calibrated for a specific sensor type. An experimental evaluation of the proposed technique was performed with specially made circular piezopolymer (PVDF) sensors designed for Structural Health Monitoring (SHM) applications, and compared with commercial piezoelectric SHM sensors of similar dimensions. Test impacts at low energies from 35 mJ to 600 mJ were generated in a laboratory by free-falling metal spheres on a 500 mm × 500 mm × 1.25 mm quasi-isotropic Carbon Fiber Reinforced Polymer (CFRP) laminate plate. From the analysis of many impact signals, the resulting localization error was improved for all types of sensors and, in particular, for the circular PVDF sensor an average error of 20.3 mm and a standard deviation of 8.9 mm was obtained.
The structural health monitoring (SHM) of critical structures is a complex task that involves the use of different sensors that are also aimed at the identification of the location of the impact point using ultrasonic sensors. For the evaluation of the impact position, reference is often made to the well-known triangulation method. This method requires the estimation of the differential time of arrival (DToA) and the group velocity of the Lamb waves propagating into a plate-like structure: the uncertainty of these two parameters is taken into consideration as main cause of localization error. The work proposes a simple laboratory procedure based on a set-up with a pair of sensors that are symmetrically placed with respect to the impact point, to estimate the uncertainty of the DToA and the propagation velocity estimates. According to a theoretical analysis of the error for the impact position, the experimental uncertainties of DToA and the propagation velocity are used to estimate the overall limit of the SHM system for the impact positioning. Because the error for the DToA estimate depends also on the adopted signal processing, three common methods are selected and compared: the threshold, the correlation method, and a likelihood algorithm. Finally, the analysis of the positioning error using multisensory configuration is reported as useful for the design of the SHM system.
A complete 3-D ultrasonic pulsed Doppler system has been developed to measure quantitatively the velocity vector field of a fluid flow independently of the probe position. The probe consists of four 2.5 MHz piezocomposite ultrasonic transducers (one central transmitter and three receivers separated by 120 degrees ) to measure the velocity projections along three different directions. The Doppler shift of the three channels is calculated by analog phase and quadrature demodulation, then digitally processed to extract the mean velocity from the complex spectrum. The accuracy of the 3-D Doppler technique has been tested on a moving string phantom providing an error of about 4% for both amplitude and direction with an acquisition window of 100 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.