Soil moisture content (SMC) and above-ground biomass (AGB) are key parameters for the understanding of both the hydrological and carbon cycles. From an economical perspective, both SMC and AGB play a significant role in the agricultural sector, one of the most relevant markets worldwide. This paper assesses the sensitivity of Global Navigation Satellite System (GNSS) reflected signals to soil moisture and vegetation biomass from an experimental point of view. For that, three scientific flights were performed in order to acquire GNSS reflectometry (GNSS-R) polarimetric observations over a wide range of terrain conditions. The GNSS-R data were used to obtain the right-left and right-right reflectivity components, which were then georeferenced according to the transmitting GNSS satellite and receiver positions. It was determined that for low-altitude GNSS-R airborne platforms, the reflectivity polarization ratio provides a highly reliable observable for SMC due to its high stability with respect to surface roughness. A correlation coefficient r2 of 0.93 and a sensitivity of 0.2 dB/SMC (%) were obtained for moderately vegetated fields with a surface roughness standard deviation below 3 cm. Similarly, the copolarized reflection coefficient shows a stable sensitivity to forest AGB with r2 equal to 0.9 with a stable sensitivity of 1.5 dB/(100 t/ha) up to AGB values not detectable by other remote sensing systems. © 2014 IEEE
This paper presents the passive reflectometry and interferometry system (PARIS) concept and how it originated in the European Space Agency (ESA), Noordwijk, The Netherlands, in 1993 as a novel method to perform mesoscale ocean altimetry. The PARIS concept uses signals of opportunity such as the signals from the global navigation satellite systems (GNSS), which are reflected off the ocean surface to perform mesoscale ocean altimetry. Essentially, the relative delay between the direct and the reflected signals received from a Low Earth Orbit satellite provides information about sea surface height. The paper describes an original experiment on sea surface altimetry using GPS-reflected signals. The objective of the experiment was to demonstrate the potential of the PARIS concept. This experiment is the first one ever published on performing sea surface height estimations using reflected navigation signals in a controlled environment. The key result of the experiment is the demonstration of a root mean squared (RMS) height accuracy within 5 s of 1% of the used code chip (3 m for C/A code). Direct extrapolation of this experimental result to the 10-times higher chip rate P-code signal allows us to predict a height error of 30 cm in 5 s, provided adequate models are used to take into account systematic effects. The paper ends presenting the potential of the PARIS concept for long term ocean altimetric observations in view of the current trends of the GNSS systems. Index Terms-Global navigation satellite systems (GNSSs) reflected signals, mesoscale ocean, ocean altimetry.
Features extracted from electroencephalogram (EEG) recordings have proved to be unique enough between subjects for biometric applications. We show here that biometry based on these recordings offers a novel way to robustly authenticate or identify subjects. In this paper, we present a rapid and unobtrusive authentication method that only uses 2 frontal electrodes referenced to another one placed at the ear lobe. Moreover, the system makes use of a multistage fusion architecture, which demonstrates to improve the system performance. The performance analysis of the system presented in this paper stems from an experiment with 51 subjects and 36 intruders, where an equal error rate (EER) of 3.4% is obtained, that is, true acceptance rate (TAR) of 96.6% and a false acceptance rate (FAR) of 3.4%. The obtained performance measures improve the results of similar systems presented in earlier work.
The use of Global Navigation Satellite Systems (GNSS) signals for remote sensing applications, generally referred to as GNSS-Reflectometry (GNSS-R), is gaining increasing interest among the scientific community as a remote sensing tool for land applications. This paper describes a long term experimental campaign in which an extensive dataset of GNSS-R polarimetric measurements was acquired over a crop field from a ground-based stationary platform. Ground truth ancillary data were also continuously recorded during the whole experimental campaign. The duration of the campaign allowed to cover a full crop growing season, and as a consequence of seasonal rains on the experimental area, data could be recorded over a wide variety of soil conditions. This enabled a study on the effects of different land bio-geophysical parameters on GNSS scattered signals. It is shown that significant power variations in the measured GNSS reflected signals can be detected for different soil moisture and vegetation development conditions. In this work we also propose a technique based on the combination of the reflected signal's polarizations in Remote Sens. 2012, 4 2357 order to improve the integrity of the observables with respect to nuisance parameters such as soil roughness.
[1] We report on a coastal experiment to study GPS L1 reflections. The campaign was carried out at the Barcelona Port breaker and dedicated to the development of sea-state retrieval algorithms. An experimental system built for this purpose collected and processed GPS data to automatically generate a times series of the interferometric complex field (ICF). The ICF was analyzed off line and compared to a simple developed model that relates ICF coherence time to the ratio of significant wave height (SWH) and mean wave period (MWP). The analysis using this model showed good consistency between the ICF coherence time and nearby oceanographic buoy data. Based on this result, preliminary conclusions are drawn on the potential of coastal GNSS-R for sea state monitoring using semi-empirical modeling to relate GNSS-R ICF coherence time to SWH. INDEX
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.