Binge eating is a specific form of overeating characterized by intermittent excessive eating. In addition to altering the neurobiological reward system, several studies have highlighted that consumption of palatable food increases vulnerability to drug use. The aim of the present study was to evaluate the effects of a high-fat diet consumed in a binge pattern during adolescence on the reinforcing effects of cocaine. After 40 days of binge-eating for 2 h, three days a week (PND 29-69), the reinforcing effects of cocaine on conditioning place preference and intravenous self-administration paradigm were evaluated in adolescent male mice. Circulating leptin and ghrelin levels and the effects of bingeing on fat on CB1 mu opioid receptor (MOr) and ghrelin receptor (GHSR) gene expression in the Nucleus Accumbens (NAcc) and Ventral Tegmental Area (VTA) were also assessed. Our results showed a significant escalation in the consumption of a high-fat diet between the first and last week. High-fat binge (HFB) animals were more sensitive to the reinforcing effects of a subthreshold dose of cocaine in the paradigms assayed, and animals under fat withdrawal were more vulnerable to the reinstatement of conditioned place preference. HFB mice also showed enhanced cocaine self-administration. After fat withdrawal, exposure to a new fat binge reinstated cocaine seeking. Although HFB did not modify leptin levels, a decrease in plasmatic ghrelin was observed. Moreover, this pattern of fatty diet resulted in a reduction of MOr and CB1 gene expression in the NAcc and an increase in GHSR expression in the VTA. We propose that bingeing on fat during adolescence induces long-lasting changes in the brain through the sensitization of brain reward circuits, which predisposes individuals to seek cocaine during adulthood.
This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.