The aim of this work was to determine whether reductive acetogenesis can provide an alternative to methanogenesis in the rumen. Gnotobiotic lambs were inoculated with a functional rumen microbiota lacking methanogens and reared to maturity on a fibrous diet. Lambs with a methanogen-free rumen grew well, and the feed intake and ruminal volatile fatty acid concentrations for lambs lacking ruminal methanogens were lower but not markedly dissimilar from those for conventional lambs reared on the same diet. A high population density (10 7 to 10 8 cells g ؊1 ) of ruminal acetogens slowly developed in methanogen-free lambs. Sulfate-and fumarate-reducing bacteria were present, but their population densities were highly variable. In methanogen-free lambs, the hydrogen capture from fermentation was low (28 to 46%) in comparison with that in lambs containing ruminal methanogens (>90%). Reductive acetogenesis was not a significant part of ruminal fermentation in conventional lambs but contributed 21 to 25% to the fermentation in methanogen-free meroxenic animals. Ruminal H 2 utilization was lower in lambs lacking ruminal methanogens, but when a methanogen-free lamb was inoculated with a methanogen, the ruminal H 2 utilization was similar to that in conventional lambs. H 2 utilization in lambs containing a normal ruminal microflora was age dependent and increased with the animal age. The animal age effect was less marked in lambs lacking ruminal methanogens. Addition of fumarate to rumen contents from methanogen-free lambs increased H 2 utilization. These findings provide the first evidence from animal studies that reductive acetogens can sustain a functional rumen and replace methanogens as a sink for H 2 in the rumen.Methane (CH 4 ) eructated from ruminants represents a loss of 8 to 13% of the digestible energy ingested by the animal (71) and contributes to global warming. The amount of methane produced by ruminants varies with the farming system, the nature of the feed, the feeding level, the feed digestibility, and the animal species (6,67,71). The annual production of methane by ruminants, estimated to be 80 to 120 ϫ 10 6 tons or approximately 15% of total anthropogenic methane emissions (16,63), is the second largest biogenic source of methane after rice paddy fields. Decreasing methane emissions from ruminant livestock is desirable in order to both reduce greenhouse gases in the atmosphere and improve energy capture during digestion.Nutritionists have been trying for a long time to mitigate rumen methane emissions in order to enhance animal performance but so far have not been successful. The methods most commonly attempted involve utilization of antibiotics and ionophores (58), halogenated methane analogues (20,37,59), heavy metals (70), lipid-rich materials such as coconut oil (21,26,54,55,56), probiotics (58), bacteriocin (47), and numerous chemicals (1, 4). Immunization against methanogens (79), elimination of ciliate protozoans which support methanogen populations (64), and addition of acetogenic bacteria to rume...
CS31A fibrillae are thin, flexible, heteropolymeric proteinaceous appendages exposed as a capsule-like material around the cell surface of certain Escherichia coli strains. Two antigenic peptides of the S spike glycoprotein (TGEV-S) amino acids (aa) 363-371 and 521-531 of the transmissible gastroenteritis virus (TGEV) were tandemly introduced in the loop-structured, variable region aa 202-218 of the major ClpG subunit protein composing the bulk of CS31A. The resulting hybrid fibrillae with a 25 aa heterologous peptide were produced at the cell surface. Using a monoclonal antibody (Mab) specific for the TGEV epitopes, purified hybrid fibrillae were analysed in Western blotting under native conditions, which showed that the two viral epitopes were recognized immunologically as an integral part of the hybrid fibrillae, and therefore that they were antigenically active. The immunogenicity of the fusion construct was evaluated with live recombinant bacteria, purified hybrid ClpG monomers, and purified chimeric CS31A polymers. Whatever the form of hybrid used as antigen, intraperitoneally immunized outbred mice elicited serum anti-TGEV peptides antibodies (Abs) with significant titres and capable of recognizing native TGEV particles, indicating that the epitopes are exposed in an immunogenic conformation in all cases. However, virus neutralization titres were only obtained after immunization with either purified polymers or monomers. Furthermore, 4 months after an ultimate immunization with 20 micrograms of hybrid fibrillae mice developed a strong anamnestic Ab response against the two TGEV peptides following booster inoculation with virions. We conclude that CS31A fibrillae carrying a combination of TGEV epitopes as insert can induce an immunological memory in outbred animals infected with TGEV, and therefore that hybrid CS31A fibrillae may prove efficient as components of a subunit vaccine.
To assess the role of the aerobactin-related system in the virulence of bovine opportunistic Escherichia coli, and to determine the stage(s) of the overall infectious process at which it is acting, germfree lambs were mixedly infected orally with two derivative strains of this bacterium differing in their ability (Iut+) or inability (lut-) to express a functional aerobactin-mediated iron transport system. The Iutstrain was compared with the Iut+ strain for colonization of the gut, translocation to the mesenteric lymph nodes (MLN), and spread to other organs and to the body fluids of diassociated lambs. The Iutmutant was found in smaller numbers in the duodenum, suggesting that aerobactin conferred a significant selective advantage for colonization of this intestinal segment. Although the two challenge strains translocated to MLN, the population level in the MLN was always higher for the Iut+ strain. Moreover, experimental infections resulted in recovery of only the Iut+ strain in the organs other than the MLN and in the body fluids. These results indicate a role for aerobactin in promoting systemic spread of the bacteria from the intestine. Direct evidence was obtained that aerobactin secretion occurred in vivo at both intestinal and extraintestinal sites of infection. In contrast to enterobactin, aerobactin was detected in the duodenum, jejunum, ileum, cecum, liver, spleen, kidney, urine, cerebrospinal fluid, and bile. The highest concentration of aerobactin was found in the urine, even when the samples were devoid of infecting bacteria. All of these findings suggest that aerobactin is released in vivo in a diffusible form and that it may be an important step in the production of disease by intestinal opportunistic E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.