Indium–zinc oxide films (ZnxInyOx+1.5y), with x/y=0.08–12.0, are grown by low-pressure metal-organic chemical vapor deposition using the volatile metal–organic precursors In(TMHD)3 and Zn(TMHD)2 (TMHD=2,2,6,6–tetramethyl–3,5–heptanedionato). Films are smooth (rms roughness=40–50 Å) with complex microstructures which vary with composition. The highest conductivity is found at x/y=0.33, with σ=1000 S/cm (n-type; carrier density=3.7×1020 cm3; mobility=18.6 cm2/V s; dσ/dT<0). The optical transmission window of such films is broader than Sn-doped In2O3, and the absolute transparency rivals or exceeds that of the most transparent conductive oxides. X-ray diffraction, high resolution transmission electron microscopy, microdiffraction, and high resolution energy dispersive X-ray analysis show that such films are composed of a layered ZnkIn2O3+k phase precipitated in a cubic In2O3:Zn matrix.
A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric Ce, Nd, Gd, and Er complexes are coordinatively saturated by a versatile, multidentate ether-functionalized beta-ketoiminato ligand series, the melting point and volatility characteristics of which can be tuned by altering the alkyl substituents on the keto, imino, and ether sites of the ligand. Direct comparison with conventional lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO(2) buffer layer films can be grown on (001) YSZ substrates by MOCVD at significantly lower temperatures (450-650 degrees C) than previously possible by using one of the newly developed cerium beta-ketoiminate precursors. Films deposited at 540 degrees C have good out-of-plane (Deltaomega = 0.85 degrees ) and in-plane (Deltaphi = 1.65 degrees ) alignment and smooth surfaces (rms roughness approximately 4.3 A). The film growth rate decreases and the films tend to be smoother as the deposition temperature is increased. High-quality yttrium barium copper oxide (YBCO) films grown on these CeO(2) buffer layers by pulsed organometallic molecular beam epitaxy exhibit very good electrical transport properties (T(c) = 86.5 K, J(c) = 1.08 x 10(6) A/cm(2) at 77.4 K).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.