The class of primitive recursive functions may be defined as the closure of certain initial functions, namely the zero, successor and identity functions, under two schemes, namely composition (sometimes called “substitution”) and recursion. For a detailed definition the reader is referred to any standard work, for instance p. 219 of [2], by Kleene.
This paper resolves 3 problems left open by R. M. Robinson in [3].We recall that the set of primitive recursive functions is the closure under (i) substitution (or “composition”), and (ii) recursion, of the set P consisting of the zero, successor and projection functions (see any textbook, for instance p. 120 of [2]).
Our method, broadly speaking, is to take a decision problem of the required degree of unsolvability associated with a semi-Thue system, and translate from ssmi-Thue system to propositional calculus. An outline of the strategy of the proof is given in §4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.