Our previous linkage study demonstrated that the 9q22-q23 chromosome region showed a 'suggestive' linkage to nicotine dependence (ND) in the Framingham Heart Study population. In this study, we provide further evidence for the linkage of this region to ND in an independent sample. Within this region, the gene encoding Src homology 2 domain-containing transforming protein C3 (SHC3) represents a plausible candidate for association with ND, assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerströ m Test for ND (FTND). We utilized 11 single-nucleotide polymorphisms within SHC3 to examine the association with ND in 602 nuclear families of either African-American (AA) or EuropeanAmerican (EA) origin. Individual SNP-based analysis indicated three SNPs for AAs and one for EAs were significantly associated with at least one ND measure. Haplotype analysis revealed that the haplotypes A-C-T-A-T-A of rs12519-rs3750399-rs4877042-rs2297313-rs1547696-rs1331188, with a frequency of 27.8 and 17.6%, and C-T-A-G-T of rs3750399-rs4877042-rs2297313-rs3818668-rs1547696, at a frequency of 44.7 and 30.6% in the AA and Combined samples, respectively, were significantly inversely associated with the ND measures. In the EA sample, another haplotype with a frequency of 10.6%, A-G-T-G of rs1331188-rs1556384-rs4534195-rs1411836, showed a significant inverse association with ND measures. These associations remained significant after Bonferroni correction. We further demonstrated the SHC3 contributed 40.1-59.2% (depending on the ND measures) of the linkage signals detected on chromosome 9. As further support, we found that nicotine administered through infusion increased the Shc3 mRNA level by 60% in the rat striatum, and decreased it by 22% in the nucleus accumbens (NA). At the protein level, Shc3 was decreased by 38.0% in the NA and showed no change in the striatum. Together, these findings strongly implicate SHC3 in the etiology of ND, which represents an important biological candidate for further investigation.
Cigarette smoking is the leading preventable cause of death in the US. Although smoking behavior has a significant genetic determination, the specific genes and associated mechanisms underlying smoking behavior are largely unknown. Here, we performed a genome-wide association study on smoking behavior in 840 Caucasians, including 417 males and 423 females, in which we examined ∼380,000 SNPs. We found that a cluster of nine SNPs upstream from the IL15 gene were associated with smoking status in males, with the most significant SNP, rs4956302, achieving a p value (8.80×10−8) of genome-wide significance. Another SNP, rs17354547, that is highly conserved across multiple species, achieved a p value of 5.65×10−5. These two SNPs, together with two additional SNPs (rs1402812 and rs4956396) were selected from the above nine SNPs for replication in an African-American sample containing 1,251 subjects, including 412 males and 839 females. The SNP rs17354547 was successfully replicated in the male subgroup of the replication sample; it was associated with smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerstrom Test for Nicotine Dependence (FTND), with p values of 0.031, 0.0046 and 0.019, respectively. In addition, a haplotype formed by rs17354547, rs1402812 and rs4956396 was also associated with SQ, HSI and FTND, achieving p values of 0.039, 0.0093 and 0.0093, respectively. To further confirm our findings, we performed an in silico replication study of the nine SNPs in a Framingham Heart Study sample containing 7,623 Caucasians from 1,731 families, among which, 3,491 subjects are males and 4,132 are females. Again, male-specific association with smoking status was observed, for which seven of the nine SNPs achieved significant p values (p<0.05) and two achieved marginally significant p values (p<0.10) in males. Several of the nine SNPs, including the highly conserved one across species, rs17354547, are located at potential transcription factor binding sites, suggesting transcription regulation as a possible function for these SNPs. Through this function, the SNPs may modulate gene expression of IL15, a key cytokine regulating immune function. As the immune system has long been recognized to influence drug addiction behavior, our association findings suggest a novel mechanism for smoking addiction involving immune modulation via the IL15 pathway.
A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 μg/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5-22.1% and 4.1-14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine. © 2007 Blackwell Publishing Ltd
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.