Proteolysis-Targeting Chimeras (PROTACs) are heterobifunctional small-molecules that can promote the rapid and selective proteasome-mediated degradation of intracellular proteins through the recruitment of E3 ligase complexes to non-native protein substrates. The catalytic mechanism of action of PROTACs represents an exciting new modality in drug discovery that offers several potential advantages over traditional small-molecule inhibitors, including the potential to deliver pharmacodynamic (PD) efficacy which extends beyond the detectable pharmacokinetic (PK) presence of the PROTAC, driven by the synthesis rate of the protein. Herein we report the identification and development of PROTACs that selectively degrade Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) and demonstrate in vivo degradation of endogenous RIPK2 in rats at low doses and extended PD that persists in the absence of detectable compound. This disconnect between PK and PD, when coupled with low nanomolar potency, offers the potential for low human doses and infrequent dosing regimens with PROTAC medicines.
N-Myristoyltransferase (NMT) is an essential eukaryotic
enzyme and an attractive drug target in parasitic infections such
as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high
affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model.
Here we describe the discovery of 34c through optimization
of a previously described series. Development, guided by targeting
a ligand efficiency dependent lipophilicity (LELP) score of less than
10, yielded a 100-fold increase in enzyme affinity and a 100-fold
drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and
-resistant cell lines and on both blood and liver stage forms of the
parasite. These data further validate NMT as an exciting drug target
in malaria and support 34c as an attractive tool for
further optimization.
N-Myristoyltransferase (NMT) is an attractive
antiprotozoan drug target. A lead-hopping approach was utilized in
the design and synthesis of novel benzo[b]thiophene-containing
inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) NMT. These inhibitors are selective
against Homo sapiens NMT1 (HsNMT), have excellent
ligand efficiency (LE), and display antiparasitic activity in vitro. The binding mode of this series was determined by crystallography
and shows a novel binding mode for the benzothiophene ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.