A Non-Binary Snow Index for Multi-Component Surfaces (NBSI-MS) is proposed to map snow/ice cover. The NBSI-MS is based on the spectral characteristics of different Land Cover Types (LCTs), such as snow, water, vegetation, bare land, impervious, and shadow surfaces. This index can increase the separability between NBSI-MS values corresponding to snow from other LCTs and accurately delineate the snow/ice cover in non-binary maps. To test the robustness of the NBSI-MS, regions in Greenland and France–Italy where snow interacts with highly diversified geographical ecosystems were examined. Data recorded by Landsat 5 TM, Landsat 8 OLI, and Sentinel-2A MSI satellites were used. The NBSI-MS performance was also compared against the well-known Normalized Difference Snow Index (NDSI), NDSII-1, S3, and Snow Water Index (SWI) methods and evaluated based on Ground Reference Test Pixels (GRTPs) over non-binarized results. The results show that the NBSI-MS achieved an overall accuracy (OA) ranging from 0.99 to 1 with kappa coefficient values in the same range as the OA. The precision assessment confirmed the performance superiority of the proposed NBSI-MS method for removing water and shadow surfaces over the compared relevant indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.