Restoration has been elevated as an important strategy to reverse the decline of coastal wetlands worldwide. Current practice in restoration science emphasizes minimizing competition between outplanted propagules to maximize planting success. This paradigm persists despite the fact that foundational theory in ecology demonstrates that positive species interactions are key to organism success under high physical stress, such as recolonization of bare substrate. As evidence of how entrenched this restoration paradigm is, our survey of 25 restoration organizations in 14 states in the United States revealed that >95% of these agencies assume minimizing negative interactions (i.e., competition) between outplants will maximize propagule growth. Restoration experiments in both Western and Eastern Atlantic salt marshes demonstrate, however, that a simple change in planting configuration (placing propagules next to, rather than at a distance from, each other) results in harnessing facilitation and increased yields by 107% on average. Thus, small adjustments in restoration design may catalyze untapped positive species interactions, resulting in significantly higher restoration success with no added cost. As positive interactions between organisms commonly occur in coastal ecosystems (especially in more physically stressful areas like uncolonized substrate) and conservation resources are limited, transformation of the coastal restoration paradigm to incorporate facilitation theory may enhance conservation efforts, shoreline defense, and provisioning of ecosystem services such as fisheries production.shoreline defense | facilitation | coastal wetlands | wetland restoration D egradation of coastal ecosystems is occurring worldwide (1).Human-generated threats such as overharvesting, eutrophication, climate change, habitat destruction, and pollution have threatened these valuable ecosystems at local, regional and global scales (2-6). As these threats have intensified and combined, substantial declines in overall habitat coverage have occurred in almost all major coastal ecosystems, including those generated by key habitat-forming foundation species. For example, oyster reefs have declined by at least ∼85% (7), coral reefs by ∼19% (8), seagrasses by ∼29% (9), North American salt marshes by ∼42% (10), and mangroves by ∼35% (1). Because these ecosystems generate some of the richest biodiversity hotspots on Earth (11, 12), and provide critical services for human populations, including storm protection (13), fisheries production (2, 14, 15), and carbon storage (16, 17), conservation resources totaling over 1 billion US dollars have been spent globally in an attempt to halt and reverse the decline of foundation species in the coastal realm (18,19).A number of strategies have been used to conserve coastal ecosystems, including threat reduction, marine protected areas, buffer establishment, and international treaties. Habitat restoration, although in existence for many decades, has only recently been elevated as a global strategy for ...
The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late‐fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north‐central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2‐year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre‐ and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality) of prescription burn and anticipated effects on aquatic communities. Received January 9, 2013; accepted June 27, 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.