Abstract.In this study an integrated simulation of the global distribution and the radiative forcing of soil dust aerosols at the Last Glacial Maximum (LGM) is performed with an aerosol climate model, SPRINTARS. It is compared with another simulation for the present climate condition. The global total emission flux of soil dust aerosols at the LGM is simulated to be about 2.4 times as large as that in the present climate, and the simulated deposition flux is in general agreement with estimations from ice core and marine sediment samplings though it appears to be underestimated over the Antarctic. The calculated direct radiative forcings of soil dust aerosols at the LGM is close to zero at the tropopause and −0.4 W m −2 at the surface. These radiative forcings are about twice as large as those in the present climate. SPRINT-ARS also includes the microphysical parameterizations of the cloud-aerosol interaction both for liquid water and ice crystals, which affect the radiation budget. The positive radiative forcing from the indirect effect of soil dust aerosols is mainly caused by their properties to act as ice nuclei. This effect is simulated to be smaller (−0.9 W m −2 ) at the LGM than in the present. It is suggested that atmospheric dust might contribute to the cold climate during the glacial periods both through the direct and indirect effects, relative to the interglacial periods.
Dynamic sensitivities are useful to characterize time-varying systems efficiently. In metabolic reaction systems, however, analysis using these values is not so popular. This is mainly due to the following two reasons. One is that the calculation of dynamic sensitivities requires us to derive differential equations for sensitivities from those for metabolite concentrations by partial differentiation, and it is not easy for experimentalists to perform this mathematical operation. The other is that the metabolic reaction systems are mostly described by stiff differential equations, from which it may not be easy to obtain reliable numerical solutions. We have previously developed software for calculation of dynamic sensitivities (SOFTCADS), in which one can calculate dynamic sensitivities with high accuracy by setting only differential equations for metabolite concentrations. This paper further improves the algorithm of SOFTCADS to enhance its performance. The results clearly show that regardless of the degree of stiffness, the improved SOFTCADS provides dynamic sensitivities with the super high accuracy that is comparable to the machine accuracy and also completes the calculation in a shorter time.
Abstract. The integrated simulation for the global distribution and radiative forcing of soil dust aerosols in the Last Glacial Maximum (LGM) is done by an aerosol climate model, SPRINTARS, in this study. It is compared with another simulation in the present climate condition. The global total emission flux of soil dust aerosols in the LGM is simulated to be about 2.4 times as large as that in the present climate, and the simulated deposition flux is in general agreement with estimations from ice core and marine sediment samplings though it might be underestimated over the Antarctic. The calculated direct radiative forcing of soil dust aerosols in the LGM is close to zero at the tropopause and −0.4 W m−2 at the surface, which are about twice as large as those in the present climate. SPRINTARS also includes the microphysical parameterizations of the cloud-aerosol interaction both for liquid water and ice crystals, which affect the radiation budget. The positive radiative forcing of the indirect effect due to soil dust aerosols, that is mainly caused by a role of ice nuclei, is simulated to be smaller in the LGM than in the present. It is suggested that atmospheric dust might contribute to the cold climate during the glacial periods both through the direct and indirect effects, relative to the interglacial periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.