The paper describes a predictive and adaptive heating controller, using artificial neural networks to allow the adaptation of the control model to the real conditions (climate, building characteristics, user's behaviour). The controller algorithm has been developed and tested as a collaborative project between the CSEM (Centre Suisse d'Electronique et de Microtechnique, Neuchâtel, Switzerland, project leader), and the LESO-PB (Solar Energy and Building Physics Laboratory, EPFL, Lausanne, Switzerland). A significant support has been provided by leading Swiss industries in control systems. The project itself has been funded by the Swiss Federal Office of Energy (SFOE).The project has allowed the development of an original algorithm, especially suited for water heating systems, and its testing both by simulation and by experimentation on an inhabited building. The experimentation has been done using a PC software implementation. A second phase of the project, currently going on, aims at building a commercial system based on the NEUROBAT algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.