The NOvA experiment has seen a 4.4σ signal ofν e appearance in a 2 GeVν μ beam at a distance of 810 km. Using 12.33 × 10 20 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27ν μ →ν e candidates with a background of 10.3 and 102ν μ →ν μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters jΔm 2 32 j ¼ 2.48 þ0.11 −0.06 × 10 −3 eV 2 =c 4 and sin 2 θ 23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ CP ¼ π=2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ 23 values in the upper octant by 1.6σ.
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νµ interactions is combined with muon kinematics to permit separation of the quasielastic and ∆(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and ∆ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.
The LArIAT liquid argon time projection chamber, placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility, has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range ∼ 300-1400 MeV/c. This paper describes the main aspects of the detector and beamline, and also reports on calibrations performed for the detector and beamline components.
We report on multinucleon effects in low momentum transfer (<0.8 GeV/c) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.