The mechanisms mediating abnormal renal autoregulation in Dahl salt-sensitive (DS) rats have not been fully defined. In the present study, we assessed myogenic responsiveness of interlobular arteries (ILAs), afferent arterioles (AAs), and efferent arterioles in isolated perfused hydronephrotic Dahl rat kidneys. Dahl rats were divided into four groups according to strain (Dahl salt-resistant [DRI or the development of hypertension in DS rats. We have also demonstrated that in DS rats an impairment of the renal prostaglandin system contributes to blunted sodium excretion but not to abnormal glomerular hemodynamics.5To investigate further the mechanisms mediating abnormal glomerular circulatory behavior in DS rats, we carried out studies of renal microvascular responsiveness to increasing pressure in Dahl rats by using isolated perfused hydronephrotic kidneys. As detailed previously,6 this experimental model facilitates the examination of renal microvascular behavior in a controlled in vitro setting. Our current findings indicate that DS rats manifest blunted renal microvascular responsiveness to pressure when compared with DR rats, thereby contributing to the abnormal autoregulation of glomercular filtration rate observed in this strain. Materials and Methods General ProcedureMale and female Dahl rats were maintained on a low salt diet (0.2% NaCl, Teklad Premier Laboratory Diets, Madison, Wis.) and inbred in our animal facility. Experiments were carried out on 19 DR rats and 20 DS rats. After weaning, 4-5-week-old rats were used for induction of chronic hydronephrosis to permit direct visualization of the renal microcirculation. The right ureter was exposed by a small abdominal incision and ligated under methoxyflurane anesthesia (Metofane, Pittman-Moore, Mundelein, Ill.). Two or 3 weeks after surgery, seven DR and seven DS rats were placed on a
In order to evaluate the renal contribution to the metabolism of arginine, we have evaluated its biosynthesis and catabolism in the isolated perfused rat kidney. The kidneys of eight male Sprague-Dawley rats were perfused with Krebs-Ringer-bicarbonate buffer containing albumin and amino acids. Twenty-five muCi of L-[guanidino-14C]arginine or 25 muCi L-[guanidino-14C]citrulline were added to the system and radiochromatograms of the perfusate were obtained at 0, 30, 60, and 90 min. Perfusate levels of urea, creatine, and guanidine derivatives were measured with high-pressure liquid chromatography. During perfusion there was net utilization of arginine and net production of creatine, guanidinoacetic acid (GAA) and guanidinosuccinic acid (GSA). The guanidino carbon of arginine was incorporated by the kidney into urea, creatine GSA, GAA, and guanidinobutyric acid. The production of 14C-labeled urea from L-[guanidino-14C]citrulline was substantially lower than that previously demonstrated in the liver, while that of arginine was approximately 20 times greater. These studies demonstrate the important contribution of the kidney to the synthesis and metabolism of arginine.
BACKGROUND Attempts to identify noninvasive markers of ventricular dysfunction accompanying acute rejection have been hampered by a lack of detailed simultaneous hemodynamic data. Therefore, we prospectively performed serial monitoring of detailed left and right heart hemodynamic parameters in cardiac transplant recipients at the time of routine endomyocardial biopsy to better define the physiology of the allograft heart during and after acute rejection. METHODS AND RESULTS To better assess the pathophysiology of the rejection process, 18 cardiac transplant patients were prospectively studied by serial right heart micromanometer catheterization and digital image processing at the time of routine endomyocardial biopsy. Eleven patients had 18 episodes of rejection. Studies of baseline (negative biopsy preceding rejection), rejection (acute moderate rejection), and resolved (first negative biopsy after rejection) states were compared. Seven patients who did not experience an episode of rejection served as the control group. Right ventricular minimum and end-diastolic pressures increased from baseline values of 0.9 +/- 3.2 and 6.9 +/- 3.7 mm Hg, respectively, to 3.2 +/- 5.5 and 9.9 +/- 6.6 mm Hg, respectively, with rejection (both variables, p less than 0.05) and remained elevated despite histological resolution of rejection (4.3 +/- 5.5 and 10.0 +/- 7.1 mm Hg, respectively; p less than 0.05 for both variables compared with baseline values). Concurrently, right ventricular end-diastolic volumes (133 +/- 29, 119 +/- 27, and 114 +/- 30 ml; baseline, rejection, and resolved, respectively) and left ventricular end-diastolic volumes (133 +/- 24, 117 +/- 20, and 113 +/- 30 ml; baseline, rejection, and resolved, respectively) significantly decreased during rejection and remained decreased after resolution of rejection (rejection and resolved compared with baseline values, p less than 0.05). Right ventricular chamber stiffness (0.055 +/- 0.035, 0.085 +/- 0.057, and 0.092 +/- 0.076 mm Hg/ml; baseline, rejection, and resolution, respectively; rejection and resolved compared with baseline values, p less than 0.05) increased with rejection and remained elevated after resolution of rejection. Right ventricular peak filling rate also increased from a baseline value of 2.48 +/- 0.45 to 2.76 +/- 0.63 ml end-diastolic volumes per second with rejection (p less than 0.05). Elevation of right ventricular filling pressures, peak filling rate, and chamber stiffness with a concomitant decrease in end-diastolic volume is consistent with a restrictive/constrictive physiology. Mean arterial blood pressure and systemic vascular resistance were elevated after the resolution of rejection (compared with either rejection or baseline values, p less than 0.05) associated with a higher mean daily dose of prednisone (resolved compared with either baseline or rejection values, p less than 0.05). The control group experienced a time-dependent increase in mean and diastolic systemic arterial pressures (both comparisons, p less than 0.05) without detectable diastolic dysfunction. CONCLUSIONS Persistence of biventricular diastolic dysfunction may be due to an irreversible effect of rejection, although multifactorial changes in left ventricular afterload occur that may complicate serial assessment of ventricular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.