We have sequenced the coat protein gene of nine isolates of papaya ringspot virus (PRSV) including six Australian and three Asian isolates and compared these with four previously reported sequences of PRSV. There was up to 12 % sequence variation between isolates at the nucleotide level. However, there was no significant difference between the sequences obtained from Australian isolates irrespective of whether they were PRSV type P (cucurbit or papaya infecting) or PRSV type W (cucurbit infecting) and these isolates were more closely related to one another than to any other isolate. These results imply that PRSV-P, first recorded in Australia in 1991, arose locally from PRSV-W (first recorded in Australia in 1978) rather than being introduced. Further, there was no consistent sequence difference between PRSV-P and PRSV-W isolates that would obviously account for their host range difference.
The potyvirus Papaya ringspot virus (PRSV) is found throughout the tropics and subtropics. Its P biotype is a devastating pathogen of papaya crops and its W biotype of cucurbits. PRSV-P is thought to arise by mutation from PRSV-W. However, the relative impact of mutation and movement on the structure of PRSV populations is not well characterized. To investigate this, we have determined the coat protein sequences of isolates of both biotypes of PRSV from Vietnam (50), Thailand (13), India (1) and the Philippines (1), and analysed them together with 28 PRSV sequences already published, so that we can better understand the molecular epidemiology and evolution of PRSV. In Thailand, variation was greater among PRSV-W isolates (mean nucleotide divergence 7n6 %) than PRSV-P isolates (mean 2n6 %), but in Vietnamese populations the P and W biotypes were more but similarly diverse. Phylogenetic analyses of PRSV also involving its closest known relative, Moroccan watermelon mosaic virus, indicate that PRSV may have originated in Asia, particularly in the Indian subcontinent, as PRSV populations there are most diverse and hence have probably been present longest. Our analyses show that mutation, together with local and longdistance movement, contributes to population variation, and also confirms an earlier conclusion that populations of the PRSV-P biotype have evolved on several occasions from PRSV-W populations.
Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.
Bacterial artificial chromosome (BAC) libraries have been widely used in different aspects of genome research. In this paper we report the construction of the first mungbean (Vigna radiata L. Wilczek) BAC libraries. These BAC clones were obtained from two ligations and represent an estimated 3.5 genome equivalents. This correlated well with the screening of nine random single-copy restriction fragment length polymorphism probes, which detected on average three BACs each. These mungbean clones were successfully used in the development of two PCR-based markers linked closely with a major locus conditioning bruchid (Callosobruchus chinesis) resistance. These markers will be invaluable in facilitating the introgression of bruchid resistance into breeding programmes as well as the further characterisation of the resistance locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.