The Whipple Observatory 10 m reflector, operating as a 37 pixel camera, has been used to observe the Crab Nebula in TeV gamma rays. By selecting gamma-ray images based on their predicted properties, more than 98% of the background is rejected; a detection is reported at the 9.0 a level, corresponding to a flux of 1.8 x 10 11 photons cm 2 s 1 above 0.7 TeV (with a factor of 1.5 uncertainty in both flux and energy). Less than 25% of the observed flux is pulsed at the period of PSR 0531. There is no evidence for variability on time scales from months to years. Although continuum emission from the pulsar cannot be ruled out, it seems more likely that the observed flux comes from the hard Compton synchrotron spectrum of the nebula.
We have used data from the TeV γ-ray flare associated with the active galaxy Markarian 421 observed on 15 May 1996 to place bounds on the possible energy-dependence of the speed of light in the context of an effective quantum gravitational energy scale. The possibility of an observable time dispersion in high energy radiation has recently received attention in the literature, with some suggestions that the relevant energy scale could be less than the Planck mass and perhaps as low as 10 16 GeV. The limits derived here indicate this energy scale to be in excess of 4 × 10 16 GeV at the 95% confidence level. To the best of our knowledge, this constitutes the first convincing limit on such phenomena in this energy regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.