[1] Particle size distributions (PSDs) of suspended particulate matters in a coastal zone are lognormal and multimodal in general. The multimodal PSD, which is caused by the mixing of multiple particle and aggregate size groups under flocculation and erosion/resuspension, is a record of the particle and aggregate dynamics in a coastal zone. Curve-fitting software was used to decompose the multimodal PSD into subordinate lognormal PSDs of primary particles, flocculi, microflocs, and macroflocs. The curve-fitting analysis for a time series of multimodal PSDs in the Belgian coastal zone showed the dependency of the multimodality on (1) shear-dependent flocculation in a flood and ebb tide, (2) breakage-resistant flocculation in the spring season, and (3) silt-sized particle erosion and advection in a storm surge. Also, for modeling and simulation purposes, the curve-fitting analysis and the settling flux estimation for the multimodal PSDs showed the possibility of using discrete groups of primary particles, flocculi, microflocs, and macroflocs as an approximation of a continuous multimodal PSD.
Suspended Particulate Matter (SPM) concentration profiles of the lowest 2 m of the water column and particle size distribution at 2 m above the bed were measured in a coastal turbidity maximum area (southern North Sea) during more than 700 days between 2006 and 2013. The long-term data series of SPM concentration, floc size, and settling velocity have been ensemble averaged according to tidal range, alongshore residual flow direction, and season, in order to investigate the seasonal SPM dynamics and its relation with physical and biological processes. The data show that the SPM is more concentrated in the near-bed layer in summer, whereas in winter, the SPM is better mixed throughout the water column. The decrease of the SPM concentration in the water column during summer is compensated by a higher nearbed concentration indicating that a significant part of the SPM remains in the area during summer rather than being advected out of it. The opposite seasonality between near-bed layer and water column has to our knowledge not yet been presented in literature. Physical effects such as wave heights, wind climate, or storms have a weak correlation with the observed seasonality. The argument to favor microbial activity as main driver of the seasonality lies in the observed variations in floc size and settling velocity. On average, the flocs are larger and thus settling velocities higher in summer than winter.
Organic matter (OM) and suspended sediment are abundant, and interact with each other, in rivers and lakes. OM is usually adsorbed by suspended sediment and causes either particle stabilization or flocculation. In this study, the OM composition and suspended sediment flocculation potential of river water were regularly measured throughout the year 2016. The OM composition of the river water samples was measured with a liquid chromatography‐organic carbon detection system and fluorescence excitation‐emission matrix spectroscopy, and the flocculation potential was measured in a standard jar test experiment. Results from the OM analyses and flocculation potential tests, in association with a multivariate data analysis, demonstrated that the OM composition and flocculation potential of the river water were dynamic under different meteorological, hydrological, ecological, and anthropogenic conditions and closely correlated with each other. Dry seasons with low rainfall and water discharge induced a lacustrine condition and led to the OM composition being more aquagenic and flocculation‐favorable. The most favorable condition for the enhancement of flocculation was during algae bloom and associated with the production of biopolymers from algae. In contrast, rainy seasons were advantageous for stabilization of suspended sediment because of excessive transport of terrigenous humic substances from catchment areas into the river. Such terrigenous humic substances enhanced stabilization by creating enhanced electrostatic repulsion via adsorption onto the sediment surface. Findings from this research provide a better insight into the highly complex behaviors of and interactions between OM and suspended sediment in natural water environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.