In atomic force microscopes (AFM) a resonantly excited, micro-machined cantilever with a tip is used for sensing surface-related properties. When targeting the integration of AFMs into vacuum environments (e.g., for enhancing the performance of scanning electron microscopes), a tuneable Q-factor of the resonating AFM cantilever is a key feature to enable high speed measurements with high local resolution. To achieve this goal, in this study an additional mechanical stimulus is applied to the cantilever with respect to the stimulus provided by the macroscopic piezoelectric actuator. This additional stimulus is generated by an aluminum nitride piezoelectric thin film actuator integrated on the cantilever, which is driven by a phase shifted excitation. The Q-factor is determined electrically by the piezoelectric layer in a Wheatstone bridge configuration and optically verified in parallel with a laser Doppler vibrometer. Depending on the measurement technique, the Q-factor is reduced by a factor of about 1.9 (electrically) and 1.6 (optically), thus enabling the damping of MEMS structures with a straight-forward and cheap electronic approach.
When targeting the integration of atomic force microscopes (AFM) into vacuum environments (e.g., scanning electron microscopes), a tunable Q-factor of the resonating AFM cantilever is a key feature to enable high speed measurements with high local resolution. To achieve this goal, an additional stimulus is applied to the cantilever with respect to the mechanical stimulus provided by the macroscopic piezoelectric actuator. This additional stimulus is generated by an aluminium nitride based piezoelectric actuator integrated on the cantilever, which is driven by a phase shifted excitation. With this approach, the mechanical Q-factor measured with a laser Doppler vibrometer (LDV) in vacuum is electrically decreased by a factor of up to 1.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.