Abstract:Two simple models of a non-cylindrical (wavy) capillary have been applied to show the impact of pore shape and of wetting angle on water sorptivity in soils. Wetting angle derived from the Washburn approach gives an overestimated value because of pores are modelled as round capillary tubes, whereas in reality they are tortuous, wavy and interconnected. In wavy capillaries, the impact of wetting angle on water sorptivity and capillarity driven water transport can be much more pronounced in relation to Washburn approach. An observed wetting front movement can be seen as a superposition of micro jumps and rests. Experiments carried out with glass powder and two soils confirm the above predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.