We carried out a comparative study on the excited-state properties of tetracene, which is prone to singlet fission, and its 2,2′ditetracene derivative to analyze the dependence of such loss channels on molecular packing and, thus, intermolecular interactions. In neat single crystals, the absorption and emission spectra of 2,2′-ditetracene are significantly red-shifted by about 150 meV from those of tetracene, while in the case of isolated molecules dispersed in crystalline anthracene matrixes, both dyes show virtually identical emission patterns. Unlike tetracene, the absence of delayed fluorescence in 2,2′-ditetracene single-crystal photoluminescence (PL) and timedependent density functional theory (DFT) calculations based on experimental single-crystal structures indicate a decline in the excited singlet-state energy below the E(S 1 ) = 2E(T 1 ) threshold. Simultaneously, time-resolved temperature-dependent PL data reveal an interplay of the molecular S 1 state and an excited dimer state, which is efficiently populated above 10 K. Upon cooling, the photoluminescence of 2,2′-ditetracene crystals outperforms that of tetracene by more than an order of magnitude and highlights the potential of molecular design, here the covalent linking of two tetracenes, to conserve the optical properties of the individual chromophores while decisively improving their photophysical properties in the crystalline aggregate.
We report gate-tunable memristive switching in patterned LaAlO3/SrTiO3 interfaces at cryogenic temperatures. The application of voltages in the order of a few volts to the back gate of the device allows controlling and switching on and -off the inherent memory functionality (memristance). For large and small gate voltages a simple non-linear resistance characteristic is observed while a pinched hysteresis loop and memristive switching occurs in an intermediate voltage range. The memristance is further controlled by the density of oxygen vacancies, which is tuned by annealing the sample at 300 °C in nitrogen atmosphere. Depending on the annealing time the memristance at zero gate voltage can be switched on and off leading to normally-on and normally-off memristors. The presented device offers reversible and irreversible control of memristive characteristics by gate voltages and annealing, respectively, which may allow to compensate fabrication variabilities of memristors that complicate the realization of large memristor-based neural networks. a) Corresponding
Thermoelectric materials utilizing ionic transport open‐up entirely new possibilities for the recuperation of waste heat. Remarkably, solid state electrolytes which have entered the focus of battery research in recent years turn‐out to be promising candidates also for ionic thermoelectrics. Here, the dynamics of ionic transport and thermoelectric properties of a methacrylate based polymer blend in combination with a lithium salt is analyzed. Impedance spectroscopy data indicates the presence of just one transport mechanism irrespective of lithium salt concentration. In contrast, the temperature dependent ionic conductivity increases with salt concentration and can be ascribed to a Vogel–Fulcher–Tammann (VFT) behavior. The obtained Seebeck coefficients of 2 mV K−1 allow for high power outputs while the polymer matrix maintains the temperature gradient by its low thermal conductivity. Adding multi‐walled carbon nanotubes to the polymer matrix allows for variation of the Seebeck coefficient as well as the ionic and electronic conductivities. As a result, a transition between a high temperature VFT regime and a low temperature Arrhenius regime appears at a critical temperature, Tc, shifting upon addition of salt. The observed polarity change in Seebeck voltage at Tc suggests a new mode of thermoelectric operation, which is demonstrated by a proof‐of‐concept mixed electronic‐ionic‐thermoelectric generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.