Primary sarcoma of the fallopian tube is a very rare neoplasm. We report the case of a 69-year-old woman affected with leiomyosarcoma of the left fallopian tube. Her chief complaint was lower abdominal pain. The preoperative diagnosis was a left adnexal malignant tumor based on pelvic examination, abdominal computed tomography, and magnetic resonance imaging. Following a laparotomy, she was ultimately diagnosed with a FIGO IIc fallopian tube leiomyosarcoma. She was treated with total abdominal hysterectomy, bilateral salpingo-oophorectomy, pelvic lymph node dissection, partial omentectomy, and low anterior resection for rectal invasion. The patient subsequently received adjuvant chemotherapy with pirarubicin and ifosfamide. Thirty months after the first therapy, a computed tomography scan revealed metastasis of the liver, lung, and supraclavicular lymph node. The patient died of the disease 39 months after the initial treatment.
Emmprin is a transmembrane glycoprotein known as a matrix metalloproteinase inducer and is highly up-regulated in malignant cancer cells. The monocarboxylate transporters (MCTs) are responsible for H(+)-linked transport of monocarboxylates across the cell membrane. It was recently demonstrated that proper plasma membrane localization and activity of MCTs require the presence of emmprin as a chaperone and that MCT-1 also acts as chaperone for emmprin. The objectives of this study were to clarify emmprin and MCT-1 expression patterns in ovarian epithelial tumors and to elucidate the clinicopathological significance of co-localization of the two molecules. Immunohistochemical analysis of 205 epithelial tumors indicated that emmprin is always localized in cell membranes but its distribution differs according to tumor type: in lateral membranes in 89 % of adenomas, in lateral and basal membranes in 76 % of borderline tumors, and in membranes surrounding the entire cell in 98 % of carcinomas. Most carcinomas in situ also showed a lateral and basal expression pattern. In only 21 % of the carcinomas, the cells expressing membranous MCT-1 showed co-localized emmprin expression. Poor co-localization of the two molecules was more frequently found in serous carcinomas. However, the overall survival was not significantly different for the good and poor co-localization carcinoma groups. These findings indicate that the emmprin expression pattern might discriminate between invasive carcinomas and borderline tumors including carcinoma in situ. Moreover, there may be an as yet unidentified regulatory mechanism(s), for localization of MCT-1 and emmprin in cell membranes in vivo.
The purpose of this study is to calculate correction factors for plastic water (PW) and plastic water diagnostic-therapy (PWDT) phantoms in clinical photon and electron beam dosimetry using the EGSnrc Monte Carlo code system. A water-to-plastic ionization conversion factor k(pl) for PW and PWDT was computed for several commonly used Farmer-type ionization chambers with different wall materials in the range of 4-18 MV photon beams. For electron beams, a depth-scaling factor c(pl) and a chamber-dependent fluence correction factor h(pl) for both phantoms were also calculated in combination with NACP-02 and Roos plane-parallel ionization chambers in the range of 4-18 MeV. The h(pl) values for the plane-parallel chambers were evaluated from the electron fluence correction factor phi(pl)w and wall correction factors P(wall,w) and P(wall,pl) for a combination of water or plastic materials. The calculated k(pl) and h(pl) values were verified by comparison with the measured values. A set of k(pl) values computed for the Farmer-type chambers was equal to unity within 0.5% for PW and PWDT in photon beams. The k(pl) values also agreed within their combined uncertainty with the measured data. For electron beams, the c(pl) values computed for PW and PWDT were from 0.998 to 1.000 and from 0.992 to 0.997, respectively, in the range of 4-18 MeV. The phi(pl)w values for PW and PWDT were from 0.998 to 1.001 and from 1.004 to 1.001, respectively, at a reference depth in the range of 4-18 MeV. The difference in P(wall) between water and plastic materials for the plane-parallel chambers was 0.8% at a maximum. Finally, h(pl) values evaluated for plastic materials were equal to unity within 0.6% for NACP-02 and Roos chambers. The h(pl) values also agreed within their combined uncertainty with the measured data. The absorbed dose to water from ionization chamber measurements in PW and PWDT plastic materials corresponds to that in water within 1%. Both phantoms can thus be used as a substitute for water for photon and electron dosimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.