The two objectives of this study are to compare the performances of different data fusion techniques for the enhancement of urban features and subsequently to improve urban land cover types classification using a refined Bayesian classification. For the data fusion, wavelet-based fusion, Brovey transform, Elhers fusion and principal component analysis are used and the results are compared. The refined Bayesian classification uses spatial thresholds defined from local knowledge and different features obtained through a feature derivation process. The result of the refined classification is compared with the results of a standard method and it demonstrates a higher accuracy. Overall, the research indicates that multi-source information can significantly improves the interpretation and classification of land cover types and the refined Bayesian classification is a powerful tool to increase the classification accuracy.
At present, air pollution has become the main problem in many developed and developing countries. Especially, in Ulaanbaatar city of Mongolia, it has become one of the most tackled issues of every citizen living in the capital city. The aim of this study is to highlight the trend of air pollution and pollution sources in the Mongolian capital and conduct some air pollution analyses. Overall, the study indicates that the air pollution in Ulaanbaatar city is a very serious problem and for its reduction, rapid and thorough measures should be taken.
The aim of this study is to compare the changes that occurred in the main urban landcover classes of Ulaanbaatar city, Mongolia, during a centralized economy with those that occurred during a market economy and to describe the socio-economic reasons for the changes. For this purpose, multi-temporal remote sensing and geographical information system (GIS) data sets, as well as census data, are used. To extract the reliable urban land-cover information from the selected remotely sensed data sets, a refined parametric classification algorithm that uses spatial thresholds defined from local and contextual knowledge is constructed. Before applying the classification decision rule, some image fusion techniques are applied to the selected remotely sensed data sets to define the most efficient fusion method for training sample selection and for defining local and contextual knowledge. Overall, the study indicates that during the centralized economy significant changes occurred in a ger area of the city, whereas during the market economy the changes occurred in all areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.