Abstract-The design and experimental study of a 35-GHz gyrotron-traveling-wave tube (gyro-TWT) amplifier operating in the circular TE 0 i mode at the fundamental cyclotron harmonic are presented. The interaction circuit in this experiment consisted of a new type of ceramic loading that provided the required loss for stable operation. A saturated peak power of 137 kW was measured at 34.1 GHz, corresponding to a saturated gain of 47.0 dB and an efficiency of 17%, with a -3-dB bandwidth of 1.11 GHz (3.3%). Peak output powers in the range of 102.1 to 148.6 kW with -3-dB bandwidths of 1.26 and 0.94 GHz, respectively, were measured by varying the operating parameters. The gyro-TWT was found to be zero-drive stable at these operating points, demonstrating that ceramic loading is a highly effective means of suppressing spurious oscillations in gyro-TWTs. This type of ceramic loading has the added advantage of being compatible with high average power operation.
Microfabrication techniques have been developed using ultraviolet photolithography (UV-LIGA) with SU-8 photoresists to create advanced sheet beam amplifier circuits for the next generation of vacuum electron traveling wave amplifiers in the 210-220 GHz (G-band) frequency regime. We describe methods that have led to successfully fabricated millimeter wave circuits, including applying ultra-thick SU-8 photoresist layers on copper, copper electroforming solutions, and the challenging removal of the SU-8 photoresists. A table of experimental liquid SU-8 removal chemistries and results is also presented.
Vacuum electron devices require electron beams to be transported through hollow channels that pass through an electromagnetic slow-wave circuit. These electron 'beam tunnels' are shrinking toward sizes smaller than traditional techniques can manage as the operating frequencies push toward the THz. A novel technique is described and experimentally demonstrated that uses polymer monofilaments of arbitrary cross-sectional shape combined with ultraviolet photolithography (UV-LIGA) of SU-8 photoresists. This combination of monofilaments and SU-8 structures comprises a 3D mold around which copper is electroformed to produce high-quality beam tunnels of arbitrary length and size along with the electromagnetic circuits. True round beam tunnels needed for upper-millimeter wave and THz vacuum electron devices can now be fabricated in a single UV-LIGA step. These techniques are also relevant to microfluidic devices and other applications requiring very small, straight channels with aspect ratios of several hundred or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.