Background: The high rate of propagation and easy availability of water hyacinth has made it a renewable carbon source for biofuel production. The present study was undertaken to screen the feasibility of using water hyacinth's hemicelluloses as a substrate for alcohol production by microbial fermentation using mono and co-cultures of Trichoderma reesei and Fusarium oxysporum with Pichia stipitis. Results: In separate hydrolysis and fermentation (SHF), the alkali pretreated water hyacinth biomass was saccharified by crude fungal enzymes of T. reesei, F. oxysporum and then fermented by P. stipitis. In simultaneous saccharification and fermentation (SSF), the saccharification and fermentation was carried out simultaneously at optimized conditions using mono and co-cultures of selected fungal strains. Finally, the ethanol production kinetics were analyzed by appropriate methods. The higher crystalline index (66.7%) and the Fourier transform infrared (FTIR) spectra showed that the lime pretreatment possibly increased the availability of cellulose and hemicelluloses for enzymatic conversion. In SSF, the co-culture fermentation using T. reesei and P. stipitis was found to be promising with a higher yield of ethanol (0.411 g g
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.