Abstract. Deliberate injection of faults into cryptographic devices is an effective cryptanalysis technique against symmetric and asymmetric encryption algorithms. In this paper we will describe parity code based concurrent error detection (CED) approach against such attacks in substitution-permutation network (SPN) symmetric block ciphers [22]. The basic idea compares a carefully modified parity of the input plain text with that of the output cipher text resulting in a simple CED circuitry. An analysis of the SPN symmetric block ciphers reveals that on one hand, permutation of the round outputs does not alter the parity from its input to its output. On the other hand, exclusive-or with the round key and the non-linear substitution function (s-box) modify the parity from their inputs to their outputs. In order to change the parity of the inputs into the parity of outputs of an SPN encryption, we exclusive-or the parity of the SPN round function output with the parity of the round key. We also add to all s-boxes an additional 1-bit binary function that implements the combined parity of the inputs and outputs to the s-box for all its (input, output) pairs. These two modifications are used only by the CED circuitry and do not impact the SPN encryption or decryption. The proposed CED approach is demonstrated on a 16-input, 16-output SPN symmetric block cipher from [1].
We present a probabilistic fault model that allows any number of gates in an integrated circuit to fail probabilistically. Tests for this fault model, determined using the theory of output deviations, can be used to supplement tests for classical fault models, thereby increasing test quality and reducing the probability of test escape. Output deviations can also be used for test selection, whereby the most effective test patterns can be selected from large test sets during time-constrained and highvolume production testing. Experimental results are presented to evaluate the effectiveness of patterns with high output deviations for the single stuck-at and bridging fault models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.