Camouflaging is a layout-level technique that hampers an attacker from reverse engineering by introducing, in one embodiment, dummy contacts into the layout. By using a mix of real and dummy contacts, one can camouflage a standard cell whose functionality can be one of many. If an attacker cannot resolve the functionality of a camouflaged gate, he/she will extract an incorrect netlist.In this paper, we analyze the feasibility of identifying the functionality of camouflaged gates. We also propose techniques to make the dummy contact-based IC camouflaging technique resilient to reverse engineering. Furthermore, we judiciously select gates to camouflage by using techniques which ensure that the outputs of the extracted netlist are controllably corrupted. The techniques leverage IC testing principles such as justification and sensitization. The proposed techniques are evaluated using ISCAS benchmark circuits and OpenSparc T1 microprocessor controllers.
| The multinational, distributed, and multistep nature of integrated circuit (IC) production supply chain has introduced hardware-based vulnerabilities. Existing literature in hardware security assumes ad hoc threat models, defenses, and metrics for evaluation, making it difficult to analyze and compare alternate solutions. This paper systematizes the current knowledge in this emerging field, including a classification of threat models, state-of-the-art defenses, and evaluation metrics for important hardware-based attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.