Three nickel−chromium catalysts supported on aluminated mesoporous silica (SBA-15) were prepared with a fixed nickel loading of 15 wt % and differing chromium contents, which ranged between 2.6 and 5.2 wt %. They were tested in the hydrotreating of tetralin in the presence of dibenzothiophene (DBT). Moreover, a monometallic nickel catalyst was also prepared and tested, for comparison. Information regarding the structure of the calcined, reduced, and used catalysts was obtained by several physical−chemical techniques such as X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and elemental chemical analysis. The presence of small amounts of Cr3+ ions not only modifies the nickel dispersion, leading to the formation of a more active catalyst in the hydrogenation of tetralin, but also has a strong influence on the stability of these catalysts in the presence of 425 ppm DBT in the feed. The Cr3+ ions seem to act as a sulfur trap, thus preventing sulfur poisoning of nickel particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.