This study constitutes a first contribution to the knowledge of the ecology of the decapod crustaceans in waters off Guinea-Bissau. Samples were collected during a survey undertaken between October and November 2008. A total of 122 species of decapod crustaceans were identified. Results showed an increase of decapod biomass and abundance with depth, reaching maxima values in the 200–500 m depth stratum but decreasing at depths over 500 m. Average diversity by strata increased with depth, with maximum over the deep slope. Seven main assemblages were identified: five primarily associated with depth—coastal shelf (<60 m), shelf (60–200 m), upper slope (200–300 m), middle slope (300–500 m), deep slope (500–1000 m)—and two other northern shelf assemblages affected by sediment type—coastal shelf-north (<50 m) and shelf-north (50–100 m). Species of each assemblage are typified. This study provides new information about composition, distribution, abundance and assemblage structure of decapod crustaceans in Guinea-Bissau that may be useful for future assessment of the effect of trawling pressure in the area.
There is an increasing demand for biodiversity mapping to address new challenges in the management of marine ecosystems. Species distribution models are a key tool in supplying part of this information. However, the use of these models in the marine environment is still developing and the reasons for the underlying use of different methodological approaches are not always clear. In this work, we compared four different statistical techniques: the ecological niche factor analysis (ENFA), the MAXimun ENTropy algorithm (MAXENT), general additive Models (GAMs), and Random Forest. ENFA and MAXENT were applied using presence-only data whereas GAM and Random Forest used presenceabsence data. As a case study, we used four deep sea urchin species: Centrostephanus longispinus, Coelopleurus floridanus, Stylocidaris affinis, and Cidaris cidaris. The distribution of the studied sea urchins showed strong bathymetric segregation. Depth was the most important variable, followed by reflectivity and slope. The correlations between the predictive outputs of the models were similar between GAM, Random Forest and MAXENT, and lower for ENFA. Models using presence/absence data showed the highest scores in the four species, significantly outperforming ENFA in most of the cases, although differences with MAXENT were significant in only one species.
Tagoro, the youngest submarine volcano of the Canary Islands, erupted in 2011 South of El Hierro Island. Pre-existing sea floor and inhabiting biological communities were buried by the newly erupted material, promoting the appearance of new habitats. The present study pursues to describe the first metazoans colonizing different new habitats formed during the eruption and to create precedent on this field. Through dredge and remote operated vehicle samplings, five main habitat types have been detected based on the substrate type and burial status after the eruption. Inside the Tagoro volcanic complex (TVC), two new habitats are located in and around the summit and main craters—hydrothermal vents with bacterial mats and sulfurous-like fields mainly colonized by small hydrozoan colonies. Two other habitats are located downslope the TVC; new hard substrate and new mixed substrate, holding the highest biodiversity of the TVC, especially at the mixed bottoms with annelids (Chloeia cf. venusta), arthropods (Monodaeus couchii and Alpheus sp.), cnidarians (Sertularella cf. tenella), and molluscs (Neopycnodonte cochlear) as the first colonizers. An impact evaluation was done comparing the communities of those habitats with the complex and well-established community described at the stable hard substrate outside the TVC, which is constituted of highly abundant hydrozoans (Aglaophenia sp.), antipatharians (Stichopates setacea and Antipathes furcata), and colonizing epibionts (e.g., Neopycnodonte cochlear). Three years after the eruption, species numbers at Tagoro were still low compared to those occurring at similar depths outside the TVC. The first dominant species at the TVC included a large proportion of common suspension feeders of the circalittoral and bathyal hard bottoms of the area, which could have exploited the uncolonized hard bottoms and the post eruptive fertilization of water masses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.