The human immune system displays substantial variation between individuals, leading to differences in susceptibility to autoimmune disease. We present single-cell RNA sequencing (scRNA-seq) data from 1,267,758 peripheral blood mononuclear cells from 982 healthy human subjects. For 14 cell types, we identified 26,597 independent cis-expression quantitative trait loci (eQTLs) and 990 trans-eQTLs, with most showing cell type–specific effects on gene expression. We subsequently show how eQTLs have dynamic allelic effects in B cells that are transitioning from naïve to memory states and demonstrate how commonly segregating alleles lead to interindividual variation in immune function. Finally, using a Mendelian randomization approach, we identify the causal route by which 305 risk loci contribute to autoimmune disease at the cellular level. This work brings together genetic epidemiology with scRNA-seq to uncover drivers of interindividual variation in the immune system.
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon–stimulated genes (ISGs) in monocytes, reduction of naïve CD4 + T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH + CD8 + T cells. Cell type–specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type–specific cis–expression quantitative trait loci and to link SLE-associated variants to cell type–specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4 T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression.
Massively parallel reporter assays (MPRAs) can simultaneously measure the function of thousands of candidate regulatory sequences (CRSs) in a quantitative manner. In this method, CRSs are cloned upstream of a minimal promoter and reporter gene, alongside a unique barcode, and introduced into cells. If the CRS is a functional regulatory element, it will lead to the transcription of the barcode sequence, which is measured via RNA sequencing and normalized for cellular integration via DNA sequencing of the barcode. This technology has been used to test thousands of sequences and their variants for regulatory activity, to decipher the regulatory code and its evolution, and to develop genetic switches. Lentivirus-based MPRA (lentiMPRA) produces 'in-genome' readouts and enables the use of this technique in hard-totransfect cells. Here, we provide a detailed protocol for lentiMPRA, along with a user-friendly Nextflow-based computational pipeline-MPRAflow-for quantifying CRS activity from different MPRA designs. The lentiMPRA protocol takes~2 months, which includes sequencing turnaround time and data processing with MPRAflow.
The host’s gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host’s genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.