Question answering (QA) systems aim at finding answers to question posed in natural language using a collection of documents. When the collection is extracted from the Web, the structure and style of the texts are quite different from those of newspaper articles. We developed a QA system based on an answer validation process able to handle Web specificity. A large number of candidate answers are extracted from short passages in order to be validated according to question and passages characteristics. The validation module is based on a machine learning approach. It takes into account criteria characterizing both passage and answer relevance at surface, lexical, syntactic and semantic levels to deal with different types of texts. We present and compare results obtained for factual questions posed on a Web and on a newspaper collection. We show that our system outperforms a baseline by up to 48% in MRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.