In this paper, we introduce an inertial hybrid S-iteration algorithm for two asymptotically nonexpansive mappings and equilibrium problems in a real Hilbert space. Strong convergence of the iterative scheme is established. Our results improve and extend many recent results in the literature.
In this work, we introduce a new inertial accelerated Mann algorithm for finding a point in the set of fixed points of asymptotically nonexpansive mapping in a real uniformly convex Banach space. We also establish weak and strong convergence theorems of the scheme. Finally, we give a numerical experiment to validate the performance of our algorithm and compare with some existing methods. Our results generalize and improve some recent results in the literature.
We introduce a new mixed equilibrium problem with a relaxed monotone mapping in a reflexive Banach space and prove the existence of solution of the equilibrium problem. Using Bregman distance, we introduce the concept of BregmanK-mapping for a finite family of Bregman quasiasymptotically nonexpansive mappings and show the fixed point set of the BregmanK-mapping is the set of common fixed points of{Ti}i=1N. Using the BregmanK-mapping, we introduce an iterative sequence for finding a common point in the set of a common fixed points of the finite family of Bregman quasiasymptotically nonexpansive mappings and the set of solutions of some mixed equilibrium problems. Strong convergence of the iterative sequence is proved. Our results generalise and improve many recent results in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.