The granular flow is one of the principal issues for the design of pebble bed reactors. Particularly, the clogging phenomenon raises an important issue for pebble bed reactors. In this paper, we conduct experiments and discrete particle simulation of two-dimensional discharge granular flow from a conical hopper, to study the effect of the particle bed height h and hopper angle α on the clogging phenomenon. In general, the clogging probability J increases with height h and starts to saturate when h is larger than a critical value. The experimental result trends are supported by discrete simulations. To understand the underlying physical mechanism, we conduct discrete particle simulations for various h values, focusing on the following parameters: the statistical averaging of the volume fraction, velocity, and contact pressure of particles near the aperture during the discharge. We found that, among all relevant variables, the contact pressure of particles is the main cause of the increasement of J when h increases. An exponential law between the pebble bed h and clogging probability J has been established based on these observations and Janssen model. As for hopper angle α , J shows an almost constant behavior for any rise in α followed by a sudden regression at α = 75 ° . Surprisingly, the effect of α is most obvious for intermediate values of h , where we observe a sharp increasement of clogging probability. The same trend is observed in the two-dimensional discrete simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.